Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1157668871231533774310 ~2002
1157688659231537731910 ~2002
1157693639231538727910 ~2002
1157750999231550199910 ~2002
1157765243231553048710 ~2002
11577696674631078668111 ~2005
1157797871231559574310 ~2002
1157842601694705560710 ~2003
1157856191231571238310 ~2002
1157870639231574127910 ~2002
1157878979231575795910 ~2002
115788200913894584108112 ~2006
1157936999231587399910 ~2002
1158056183231611236710 ~2002
1158068609926454887310 ~2003
1158089279231617855910 ~2002
1158090599231618119910 ~2002
1158107183231621436710 ~2002
1158138071231627614310 ~2002
1158165059231633011910 ~2002
1158190393694914235910 ~2003
1158240851231648170310 ~2002
1158268211926614568910 ~2003
1158362279231672455910 ~2002
1158397463231679492710 ~2002
Exponent Prime Factor Digits Year
1158443173695065903910 ~2003
1158485759231697151910 ~2002
1158510131231702026310 ~2002
1158568571231713714310 ~2002
1158582083231716416710 ~2002
1158632063231726412710 ~2002
1158674183231734836710 ~2002
1158700931926960744910 ~2003
1158703103231740620710 ~2002
11587778471158777847111 ~2004
1158841861695305116710 ~2003
1158854597695312758310 ~2003
1158960359927168287310 ~2003
11589687912086143823911 ~2004
1158988559231797711910 ~2002
1159004663231800932710 ~2002
1159076291231815258310 ~2002
11590879031159087903111 ~2004
1159127279231825455910 ~2002
115914880112750636811112 ~2006
1159172039231834407910 ~2002
1159176001695505600710 ~2003
1159184639231836927910 ~2002
1159257899231851579910 ~2002
1159290683231858136710 ~2002
Exponent Prime Factor Digits Year
1159312811231862562310 ~2002
1159319461695591676710 ~2003
1159353053695611831910 ~2003
1159385723231877144710 ~2002
1159387283231877456710 ~2002
1159418713695651227910 ~2003
1159436951231887390310 ~2002
1159491803231898360710 ~2002
1159502137695701282310 ~2003
1159528763231905752710 ~2002
1159559699231911939910 ~2002
1159594721927675776910 ~2003
11596256471159625647111 ~2004
1159647161927717728910 ~2003
1159666223231933244710 ~2002
1159743311231948662310 ~2002
1159772639231954527910 ~2002
1159800539231960107910 ~2002
1159830299231966059910 ~2002
1159840043231968008710 ~2002
1159850017695910010310 ~2003
1159863443231972688710 ~2002
1159874939231974987910 ~2002
1159916399231983279910 ~2002
1159952231231990446310 ~2002
Exponent Prime Factor Digits Year
1159973519231994703910 ~2002
1159977743231995548710 ~2002
1159989503231997900710 ~2002
1160013083232002616710 ~2002
1160071331232014266310 ~2002
1160122751232024550310 ~2002
1160139839232027967910 ~2002
1160204459232040891910 ~2002
11602067571624289459911 ~2004
116024374121116436086312 ~2007
11602558391160255839111 ~2004
1160257823232051564710 ~2002
1160320559232064111910 ~2002
1160321579232064315910 ~2002
1160322287928257829710 ~2003
1160337443232067488710 ~2002
1160357519232071503910 ~2002
1160367673696220603910 ~2003
1160399831928319864910 ~2003
1160492219232098443910 ~2002
1160529257696317554310 ~2003
1160532563232106512710 ~2002
1160535059232107011910 ~2002
1160564771232112954310 ~2002
1160594579232118915910 ~2002
Home
5.187.277 digits
e-mail
25-11-17