Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
20237612472023761247111 ~2005
2023774199404754839910 ~2004
20238833771214330026311 ~2005
202392403911738759426312 ~2007
20239266131214355967911 ~2005
20239664473238346315311 ~2006
2024043431404808686310 ~2004
2024093171404818634310 ~2004
2024165219404833043910 ~2004
20242500912024250091111 ~2005
2024315003404863000710 ~2004
20244965994858791837711 ~2006
2024513411404902682310 ~2004
20245183371214711002311 ~2005
20245346571619627725711 ~2005
2024780963404956192710 ~2004
20248241571214894494311 ~2005
2024867711404973542310 ~2004
2024919251404983850310 ~2004
2024964731404992946310 ~2004
2024975339404995067910 ~2004
2025015983405003196710 ~2004
20250291796885099208711 ~2007
2025101003405020200710 ~2004
2025179231405035846310 ~2004
Exponent Prime Factor Digits Year
2025227063405045412710 ~2004
20252625371215157522311 ~2005
2025265283405053056710 ~2004
2025401831405080366310 ~2004
2025508931405101786310 ~2004
2025535931405107186310 ~2004
2025566759405113351910 ~2004
2025572231405114446310 ~2004
2025608831405121766310 ~2004
2025623339405124667910 ~2004
2025637391405127478310 ~2004
2025639659405127931910 ~2004
20256559219318017236711 ~2007
2025715031405143006310 ~2004
2025903059405180611910 ~2004
2025917483405183496710 ~2004
2025931151405186230310 ~2004
20259514694457093231911 ~2006
2025954323405190864710 ~2004
2025967379405193475910 ~2004
20260313411215618804711 ~2005
2026033643405206728710 ~2004
2026126871405225374310 ~2004
20262088811215725328711 ~2005
2026242671405248534310 ~2004
Exponent Prime Factor Digits Year
20263071611215784296711 ~2005
2026357691405271538310 ~2004
20264268072026426807111 ~2005
2026427831405285566310 ~2004
20264451496079335447111 ~2007
2026451519405290303910 ~2004
2026486571405297314310 ~2004
2026635311405327062310 ~2004
2026672139405334427910 ~2004
2026714451405342890310 ~2004
2026751063405350212710 ~2004
2026850543405370108710 ~2004
20268656234864477495311 ~2006
20268740411216124424711 ~2005
20268770331216126219911 ~2005
20270251971621620157711 ~2005
2027040563405408112710 ~2004
2027043839405408767910 ~2004
2027045963405409192710 ~2004
2027166299405433259910 ~2004
2027182259405436451910 ~2004
2027263499405452699910 ~2004
2027292119405458423910 ~2004
2027345459405469091910 ~2004
20274183771216451026311 ~2005
Exponent Prime Factor Digits Year
2027468879405493775910 ~2004
2027600231405520046310 ~2004
20276120211622089616911 ~2005
2027612399405522479910 ~2004
20276846411216610784711 ~2005
2027754563405550912710 ~2004
2027962043405592408710 ~2004
2027995811405599162310 ~2004
20280089112028008911111 ~2005
2028051803405610360710 ~2004
20280649571216838974311 ~2005
20280791533244926644911 ~2006
2028136679405627335910 ~2004
2028343931405668786310 ~2004
2028350123405670024710 ~2004
2028358379405671675910 ~2004
2028370271405674054310 ~2004
202841080915821604310312 ~2008
2028559223405711844710 ~2004
2028582779405716555910 ~2004
2028661259405732251910 ~2004
2028773783405754756710 ~2004
2028792131405758426310 ~2004
20289223811217353428711 ~2005
20289230531217353831911 ~2005
Home
4.724.182 digits
e-mail
25-04-13