Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1084064963216812992710 ~2002
108407023115827425372712 ~2006
1084083881650450328710 ~2003
1084200791216840158310 ~2002
10842721133252816339111 ~2004
1084349137650609482310 ~2003
10843568995204913115311 ~2005
1084357751216871550310 ~2002
10844157911951948423911 ~2004
1084457879867566303310 ~2003
10844830211735172833711 ~2004
10844838671084483867111 ~2003
1084507559216901511910 ~2002
1084528883216905776710 ~2002
10845740471084574047111 ~2003
1084612799216922559910 ~2002
1084630763216926152710 ~2002
1084763411216952682310 ~2002
1084766759216953351910 ~2002
1084779119216955823910 ~2002
1084788863216957772710 ~2002
10848313271084831327111 ~2003
1084836719216967343910 ~2002
1084896479216979295910 ~2002
1084905119216981023910 ~2002
Exponent Prime Factor Digits Year
10849299074339719628111 ~2005
1084949303216989860710 ~2002
1084960031216992006310 ~2002
1084964339216992867910 ~2002
1084972943216994588710 ~2002
1085008139217001627910 ~2002
1085017573651010543910 ~2003
10850282536944180819311 ~2005
1085071919217014383910 ~2002
1085086657651051994310 ~2003
1085087039217017407910 ~2002
1085195711217039142310 ~2002
1085212343217042468710 ~2002
1085269033651161419910 ~2003
1085355263217071052710 ~2002
10853643071085364307111 ~2003
10854596532388011236711 ~2004
1085523119217104623910 ~2002
1085539439217107887910 ~2002
1085546519217109303910 ~2002
1085547371217109474310 ~2002
10855492072822427938311 ~2004
1085551283217110256710 ~2002
1085559383217111876710 ~2002
1085578811217115762310 ~2002
Exponent Prime Factor Digits Year
1085593493651356095910 ~2003
108559633913027156068112 ~2006
10856147111085614711111 ~2003
1085626403217125280710 ~2002
1085640203217128040710 ~2002
1085669219217133843910 ~2002
1085669951217133990310 ~2002
1085673383217134676710 ~2002
1085674511217134902310 ~2002
1085736761651442056710 ~2003
10857534911085753491111 ~2003
1085776031217155206310 ~2002
1085776781651466068710 ~2003
1085796863217159372710 ~2002
1085818763217163752710 ~2002
1085828291217165658310 ~2002
1085834663217166932710 ~2002
1085849339217169867910 ~2002
1085865383217173076710 ~2002
10858659171520212283911 ~2004
10858886591954599586311 ~2004
1085903831217180766310 ~2002
1085930903217186180710 ~2002
1085953301651571980710 ~2003
1085982323217196464710 ~2002
Exponent Prime Factor Digits Year
1086008939217201787910 ~2002
1086011831217202366310 ~2002
1086017759217203551910 ~2002
1086064043217212808710 ~2002
1086127391217225478310 ~2002
1086168431217233686310 ~2002
1086177341868941872910 ~2003
1086201073651720643910 ~2003
1086225359217245071910 ~2002
10862452631737992420911 ~2004
1086259943217251988710 ~2002
108629568728678206136912 ~2007
1086301631217260326310 ~2002
1086318599217263719910 ~2002
1086343763217268752710 ~2002
1086351131217270226310 ~2002
1086359243217271848710 ~2002
1086375371217275074310 ~2002
1086397583217279516710 ~2002
1086415381651849228710 ~2003
1086421781869137424910 ~2003
1086423293651853975910 ~2003
1086501803217300360710 ~2002
1086527759217305551910 ~2002
1086564097651938458310 ~2003
Home
5.187.277 digits
e-mail
25-11-17