Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17393835531043630131911 ~2004
1739462723347892544710 ~2003
17395141491391611319311 ~2005
1739518199347903639910 ~2003
1739535299347907059910 ~2003
1739567111347913422310 ~2003
1739677811347935562310 ~2003
1739871599347974319910 ~2003
1739874683347974936710 ~2003
17398938731043936323911 ~2004
1739935331347987066310 ~2003
17399561571043973694311 ~2004
1739970311347994062310 ~2003
17399949531043996971911 ~2004
17400627771044037666311 ~2004
17401752731044105163911 ~2004
17401975276960790108111 ~2006
1740270803348054160710 ~2003
17402796911740279691111 ~2005
1740357551348071510310 ~2003
17405733431740573343111 ~2005
17405738931044344335911 ~2004
1740594599348118919910 ~2003
17406007332784961172911 ~2005
17406117671740611767111 ~2005
Exponent Prime Factor Digits Year
1740749891348149978310 ~2003
17407632011044457920711 ~2004
1740926723348185344710 ~2003
1740934439348186887910 ~2003
17409820991740982099111 ~2005
17409877095222963127111 ~2006
17410347972785655675311 ~2005
17410424531044625471911 ~2004
1741116983348223396710 ~2003
17411308131044678487911 ~2004
1741164371348232874310 ~2003
1741211399348242279910 ~2003
17412530692437754296711 ~2005
17413502571393080205711 ~2005
1741385111348277022310 ~2003
1741419671348283934310 ~2003
1741460183348292036710 ~2003
1741503143348300628710 ~2003
1741513859348302771910 ~2003
1741519583348303916710 ~2003
1741538003348307600710 ~2003
1741545959348309191910 ~2003
1741547399348309479910 ~2003
17415475931044928555911 ~2004
1741652543348330508710 ~2003
Exponent Prime Factor Digits Year
1741693379348338675910 ~2003
1741718243348343648710 ~2003
1741728743348345748710 ~2003
1741750799348350159910 ~2003
1741763879348352775910 ~2003
17418828371045129702311 ~2004
17419661811045179708711 ~2004
1742035331348407066310 ~2003
1742092559348418511910 ~2003
1742151791348430358310 ~2003
1742161511348432302310 ~2003
17421855411045311324711 ~2004
17422272371045336342311 ~2004
17423272393136189030311 ~2006
1742362931348472586310 ~2003
1742420063348484012710 ~2003
1742422163348484432710 ~2003
1742467439348493487910 ~2003
1742500271348500054310 ~2003
1742570003348514000710 ~2003
1742606699348521339910 ~2003
17426885511394150840911 ~2005
1742717783348543556710 ~2003
17427687011045661220711 ~2004
17428717011394297360911 ~2005
Exponent Prime Factor Digits Year
1742903951348580790310 ~2003
17430594011045835640711 ~2004
1743064439348612887910 ~2003
1743156011348631202310 ~2003
1743162671348632534310 ~2003
17432017311394561384911 ~2005
1743207491348641498310 ~2003
1743299843348659968710 ~2003
1743386783348677356710 ~2003
1743407423348681484710 ~2003
1743439619348687923910 ~2003
17434494711394759576911 ~2005
1743480911348696182310 ~2003
174350527719178558047112 ~2007
1743512411348702482310 ~2003
1743527171348705434310 ~2003
1743577271348715454310 ~2003
1743608123348721624710 ~2003
1743659999348731999910 ~2003
1743752579348750515910 ~2003
1743840011348768002310 ~2003
17438674314534055320711 ~2006
1743899519348779903910 ~2003
1743968591348793718310 ~2003
17441519931046491195911 ~2004
Home
4.768.925 digits
e-mail
25-05-04