Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1882790543376558108710 ~2003
1882803239376560647910 ~2003
1882810031376562006310 ~2003
1882855763376571152710 ~2003
1882871591376574318310 ~2003
18829286815648786043111 ~2006
18829812371129788742311 ~2005
1883274539376654907910 ~2003
18833242913389983723911 ~2006
18834682971130080978311 ~2005
1883508131376701626310 ~2003
1883526803376705360710 ~2003
1883631479376726295910 ~2003
1883639399376727879910 ~2003
18836874731130212483911 ~2005
18837165531130229931911 ~2005
18837317411130239044711 ~2005
18837348896027951644911 ~2006
1883746043376749208710 ~2003
1883833739376766747910 ~2003
1883843651376768730310 ~2003
1883877263376775452710 ~2003
1883898491376779698310 ~2003
1883949311376789862310 ~2003
1883962739376792547910 ~2003
Exponent Prime Factor Digits Year
18840539571507243165711 ~2005
1884142523376828504710 ~2003
1884204743376840948710 ~2003
18842606331130556379911 ~2005
1884285191376857038310 ~2003
1884332423376866484710 ~2003
18843761271507500901711 ~2005
1884429731376885946310 ~2003
1884499091376899818310 ~2003
1884501071376900214310 ~2003
1884581879376916375910 ~2003
18846367031884636703111 ~2005
1884656699376931339910 ~2003
1884748031376949606310 ~2003
1884790283376958056710 ~2003
1884913223376982644710 ~2003
18849477971130968678311 ~2005
1884969431376993886310 ~2003
1885082579377016515910 ~2003
18850934111885093411111 ~2005
1885172351377034470310 ~2003
18852437571131146254311 ~2005
1885302131377060426310 ~2003
1885413083377082616710 ~2003
18855394371508431549711 ~2005
Exponent Prime Factor Digits Year
1885583783377116756710 ~2003
18855987891508479031311 ~2005
1885624679377124935910 ~2003
1885728023377145604710 ~2003
1885809119377161823910 ~2003
1885811783377162356710 ~2003
1885821659377164331910 ~2003
18858266531131495991911 ~2005
1885830431377166086310 ~2003
1885857419377171483910 ~2003
18858936171131536170311 ~2005
1885956203377191240710 ~2003
18860010011131600600711 ~2005
18860256771131615406311 ~2005
1886027831377205566310 ~2003
1886068319377213663910 ~2003
1886122391377224478310 ~2003
1886151539377230307910 ~2003
1886234723377246944710 ~2003
18863003231886300323111 ~2005
1886303819377260763910 ~2003
18863272991886327299111 ~2005
1886342891377268578310 ~2003
1886346659377269331910 ~2003
1886362931377272586310 ~2003
Exponent Prime Factor Digits Year
1886392463377278492710 ~2003
1886402471377280494310 ~2003
1886420423377284084710 ~2003
1886517683377303536710 ~2003
1886590091377318018310 ~2003
1886603063377320612710 ~2003
18866287131131977227911 ~2005
1886652083377330416710 ~2003
1886700611377340122310 ~2003
1886746703377349340710 ~2003
1886765399377353079910 ~2003
1886927351377385470310 ~2003
18869467094151282759911 ~2006
1886953559377390711910 ~2003
1887064043377412808710 ~2003
1887105263377421052710 ~2003
1887145283377429056710 ~2003
1887165251377433050310 ~2003
1887186971377437394310 ~2003
1887203723377440744710 ~2003
1887214079377442815910 ~2003
1887220271377444054310 ~2003
1887257699377451539910 ~2003
1887272531377454506310 ~2003
18872904431887290443111 ~2005
Home
4.768.925 digits
e-mail
25-05-04