Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1887300059377460011910 ~2003
18873548271509883861711 ~2005
18874575971132474558311 ~2005
1887466799377493359910 ~2003
18874919171132495150311 ~2005
1887655331377531066310 ~2003
1887656663377531332710 ~2003
1887700163377540032710 ~2003
1887727703377545540710 ~2003
1887756971377551394310 ~2003
1887853403377570680710 ~2003
1887870779377574155910 ~2003
1887952439377590487910 ~2003
1888101503377620300710 ~2003
1888138391377627678310 ~2003
18881472011132888320711 ~2005
1888155239377631047910 ~2003
1888245323377649064710 ~2003
18882645411510611632911 ~2005
18883061091510644887311 ~2005
18883428371133005702311 ~2005
1888455623377691124710 ~2003
1888470791377694158310 ~2003
18884866611133091996711 ~2005
18884927695665478307111 ~2006
Exponent Prime Factor Digits Year
1888545803377709160710 ~2003
18886430274532743264911 ~2006
1888662563377732512710 ~2003
1888669031377733806310 ~2003
1888887971377777594310 ~2003
1888932863377786572710 ~2003
1889093291377818658310 ~2003
18891330671889133067111 ~2005
1889147483377829496710 ~2003
1889162843377832568710 ~2003
18891742571133504554311 ~2005
1889210723377842144710 ~2003
18892124174534109800911 ~2006
1889307419377861483910 ~2003
1889371019377874203910 ~2003
1889372603377874520710 ~2003
1889527691377905538310 ~2003
18895862691511669015311 ~2005
1889587811377917562310 ~2003
1889649803377929960710 ~2003
18896613171133796790311 ~2005
18896753531133805211911 ~2005
1889753363377950672710 ~2003
1889765291377953058310 ~2003
1889777471377955494310 ~2003
Exponent Prime Factor Digits Year
1889800691377960138310 ~2003
1889877851377975570310 ~2003
188988430160098320771912 ~2009
1889904479377980895910 ~2003
1889924339377984867910 ~2003
1889950703377990140710 ~2003
1890051983378010396710 ~2003
1890216479378043295910 ~2003
1890295691378059138310 ~2003
18903077231890307723111 ~2005
1890316919378063383910 ~2003
1890389471378077894310 ~2003
1890459731378091946310 ~2003
18905274114915371268711 ~2006
18906145031890614503111 ~2005
1890619751378123950310 ~2003
1890652919378130583910 ~2003
1890686663378137332710 ~2003
1890694523378138904710 ~2003
1890703583378140716710 ~2003
1890722783378144556710 ~2003
1890723239378144647910 ~2003
18907777513025244401711 ~2006
1890781391378156278310 ~2003
1890811031378162206310 ~2003
Exponent Prime Factor Digits Year
1890913019378182603910 ~2003
1890923159378184631910 ~2003
1890980471378196094310 ~2003
1891003871378200774310 ~2003
189102864141980835830312 ~2008
18910334773025653563311 ~2006
1891105439378221087910 ~2003
1891225631378245126310 ~2003
18912309171134738550311 ~2005
1891235231378247046310 ~2003
18912359231891235923111 ~2005
18912374571512989965711 ~2005
18913226332647851686311 ~2006
1891518119378303623910 ~2003
18915399713404771947911 ~2006
18915948771134956926311 ~2005
18916011371134960682311 ~2005
1891663079378332615910 ~2003
18917029371513362349711 ~2005
1891727339378345467910 ~2003
1891756703378351340710 ~2003
18917955191891795519111 ~2005
1891800563378360112710 ~2003
1891811063378362212710 ~2003
1891931939378386387910 ~2003
Home
4.768.925 digits
e-mail
25-05-04