Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
929921159185984231910 ~2001
929943323185988664710 ~2001
929971379185994275910 ~2001
929974091185994818310 ~2001
929986637557991982310 ~2002
930008483186001696710 ~2001
930014339186002867910 ~2001
930017987744014389710 ~2003
930055751186011150310 ~2001
930115223186023044710 ~2001
930189791186037958310 ~2001
930190753558114451910 ~2002
930217199186043439910 ~2001
930245891186049178310 ~2001
930249277558149566310 ~2002
930253501558152100710 ~2002
930283379186056675910 ~2001
930321071744256856910 ~2003
930362099186072419910 ~2001
930368891186073778310 ~2001
930374411186074882310 ~2001
9304046091302566452711 ~2003
930415103186083020710 ~2001
930417721558250632710 ~2002
930420539186084107910 ~2001
Exponent Prime Factor Digits Year
930424199186084839910 ~2001
930458891186091778310 ~2001
930502343186100468710 ~2001
930505883186101176710 ~2001
9305073971488811835311 ~2003
930544331744435464910 ~2003
930611651186122330310 ~2001
930617591186123518310 ~2001
930639253558383551910 ~2002
9306547335025535558311 ~2005
9306736311675212535911 ~2003
930695099186139019910 ~2001
930742643186148528710 ~2001
930752783186150556710 ~2001
930754211186150842310 ~2001
930769943186153988710 ~2001
930773891186154778310 ~2001
930793271186158654310 ~2001
9307994833164718242311 ~2004
9308131012978601923311 ~2004
930818783186163756710 ~2001
930844559186168911910 ~2001
930847139186169427910 ~2001
930855911186171182310 ~2001
9308604172234065000911 ~2004
Exponent Prime Factor Digits Year
930909641558545784710 ~2002
930990719186198143910 ~2001
931014107744811285710 ~2003
931047011186209402310 ~2001
931062227744849781710 ~2003
9310778411489724545711 ~2003
9311627411489860385711 ~2003
931165331186233066310 ~2001
931172579186234515910 ~2001
9311887732234853055311 ~2004
9312002092979840668911 ~2004
9312602232235024535311 ~2004
931312703186262540710 ~2001
931322659931322659110 ~2003
931334303186266860710 ~2001
931355759186271151910 ~2001
93139558744706988176112 ~2007
931421651186284330310 ~2001
9314227871490276459311 ~2003
931494803186298960710 ~2001
93150299311178035916112 ~2005
931515911186303182310 ~2001
9315493212049408506311 ~2004
931552403186310480710 ~2001
931566737558940042310 ~2002
Exponent Prime Factor Digits Year
9315880393167399332711 ~2004
931596443186319288710 ~2001
931668191186333638310 ~2001
9316836719130499975911 ~2005
931691231186338246310 ~2001
931712759186342551910 ~2001
931719611186343922310 ~2001
931770011186354002310 ~2001
931819139186363827910 ~2001
931857181559114308710 ~2002
931876307745501045710 ~2003
931891799186378359910 ~2001
931910341559146204710 ~2002
931914803186382960710 ~2001
931922861745538288910 ~2003
9319230531304692274311 ~2003
931927033559156219910 ~2002
931957319186391463910 ~2001
931962959186392591910 ~2001
931965329745572263310 ~2003
931979843186395968710 ~2001
931989479745591583310 ~2003
932032741559219644710 ~2002
932070803186414160710 ~2001
932196803186439360710 ~2001
Home
5.247.179 digits
e-mail
25-12-14