Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1688566823337713364710 ~2003
1688615843337723168710 ~2003
1688802851337760570310 ~2003
1688836211337767242310 ~2003
1688873519337774703910 ~2003
16888897491351111799311 ~2005
1688967011337793402310 ~2003
1688997179337799435910 ~2003
1689004679337800935910 ~2003
1689100631337820126310 ~2003
16891296534053911167311 ~2006
1689141563337828312710 ~2003
168916237316215958780912 ~2007
16891713295067513987111 ~2006
16892023971351361917711 ~2005
16892037411351362992911 ~2005
16892083371013525002311 ~2004
168921115141892436544912 ~2008
1689238403337847680710 ~2003
16892795834054270999311 ~2006
1689404543337880908710 ~2003
1689449903337889980710 ~2003
1689523403337904680710 ~2003
168953545932439080812912 ~2008
16895454611013727276711 ~2004
Exponent Prime Factor Digits Year
1689620351337924070310 ~2003
1689638183337927636710 ~2003
1689772979337954595910 ~2003
1689773051337954610310 ~2003
1689793559337958711910 ~2003
1689812363337962472710 ~2003
1689888911337977782310 ~2003
1690056839338011367910 ~2003
16902069611014124176711 ~2004
16902118671352169493711 ~2005
16902130991690213099111 ~2005
16902547394056611373711 ~2006
16903148531014188911911 ~2004
1690320563338064112710 ~2003
1690336859338067371910 ~2003
1690380959338076191910 ~2003
16904198394057007613711 ~2006
1690440239338088047910 ~2003
1690441583338088316710 ~2003
1690449671338089934310 ~2003
1690507979338101595910 ~2003
1690554419338110883910 ~2003
16905719593043029526311 ~2005
16906587193043185694311 ~2005
1690730039338146007910 ~2003
Exponent Prime Factor Digits Year
1690792991338158598310 ~2003
1690796351338159270310 ~2003
1690813199338162639910 ~2003
1690852343338170468710 ~2003
1690886159338177231910 ~2003
16909618611352769488911 ~2005
1691013419338202683910 ~2003
16910492991352839439311 ~2005
1691081303338216260710 ~2003
1691091971338218394310 ~2003
1691139143338227828710 ~2003
1691156231338231246310 ~2003
16912403235750217098311 ~2006
1691255099338251019910 ~2003
1691279543338255908710 ~2003
1691437799338287559910 ~2003
1691479943338295988710 ~2003
1691545259338309051910 ~2003
1691660903338332180710 ~2003
169168807718608568847112 ~2007
1691801411338360282310 ~2003
16918071372706891419311 ~2005
1691842079338368415910 ~2003
16918536776429043972711 ~2006
16921280931015276855911 ~2004
Exponent Prime Factor Digits Year
16922111091353768887311 ~2005
1692276023338455204710 ~2003
16922814411015368864711 ~2004
1692288659338457731910 ~2003
1692368663338473732710 ~2003
1692567323338513464710 ~2003
1692616811338523362310 ~2003
1692678791338535758310 ~2003
16927567574062616216911 ~2006
1692757271338551454310 ~2003
1692762959338552591910 ~2003
1692775583338555116710 ~2003
16927849971354227997711 ~2005
1692825611338565122310 ~2003
16928551631692855163111 ~2005
1692979859338595971910 ~2003
1692984131338596826310 ~2003
1693051331338610266310 ~2003
1693099979338619995910 ~2003
1693131491338626298310 ~2003
16932192913047794723911 ~2005
1693349519338669903910 ~2003
1693369019338673803910 ~2003
169337134932512729900912 ~2008
16934447518128534804911 ~2006
Home
4.724.182 digits
e-mail
25-04-13