Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18004599772520643967911 ~2005
1800468023360093604710 ~2003
18005631132880900980911 ~2005
1800673883360134776710 ~2003
1800689183360137836710 ~2003
1800941711360188342310 ~2003
1800945431360189086310 ~2003
1800997091360199418310 ~2003
1801003439360200687910 ~2003
18010057197564224019911 ~2007
1801012091360202418310 ~2003
1801044743360208948710 ~2003
1801049231360209846310 ~2003
18011958071801195807111 ~2005
1801335083360267016710 ~2003
1801410659360282131910 ~2003
1801472591360294518310 ~2003
1801477439360295487910 ~2003
1801501451360300290310 ~2003
1801615559360323111910 ~2003
1801617659360323531910 ~2003
1801651343360330268710 ~2003
18019046091441523687311 ~2005
1801953311360390662310 ~2003
1801977623360395524710 ~2003
Exponent Prime Factor Digits Year
1801986611360397322310 ~2003
1802033483360406696710 ~2003
18020786511441662920911 ~2005
1802206811360441362310 ~2003
1802223191360444638310 ~2003
1802337011360467402310 ~2003
1802341811360468362310 ~2003
1802455439360491087910 ~2003
1802552651360510530310 ~2003
18025898271442071861711 ~2005
18026030271442082421711 ~2005
18026486092523708052711 ~2005
1802671919360534383910 ~2003
1802729399360545879910 ~2003
18027900797571718331911 ~2007
18028456211081707372711 ~2004
1802857211360571442310 ~2003
18028627391802862739111 ~2005
18028856571081731394311 ~2004
18028886531081733191911 ~2004
18029018393245223310311 ~2006
1802947859360589571910 ~2003
18030056931081803415911 ~2004
18030599571081835974311 ~2004
18030748812884919809711 ~2005
Exponent Prime Factor Digits Year
18030839511442467160911 ~2005
1803097151360619430310 ~2003
18031196991442495759311 ~2005
1803144383360628876710 ~2003
1803150983360630196710 ~2003
1803252491360650498310 ~2003
1803256271360651254310 ~2003
1803294191360658838310 ~2003
1803318683360663736710 ~2003
1803384683360676936710 ~2003
1803425471360685094310 ~2003
18034914913246284683911 ~2006
1803558131360711626310 ~2003
1803672011360734402310 ~2003
1803689099360737819910 ~2003
1803689939360737987910 ~2003
1803696263360739252710 ~2003
1803721919360744383910 ~2003
18037226998657868955311 ~2007
18037516132525252258311 ~2005
1803755363360751072710 ~2003
1803866231360773246310 ~2003
1803878231360775646310 ~2003
18038790711443103256911 ~2005
18039965172886394427311 ~2005
Exponent Prime Factor Digits Year
18041089791443287183311 ~2005
18041710031804171003111 ~2005
1804226003360845200710 ~2003
1804375763360875152710 ~2003
1804451639360890327910 ~2003
1804473323360894664710 ~2003
1804482539360896507910 ~2003
1804510343360902068710 ~2003
1804581923360916384710 ~2003
1804585511360917102310 ~2003
1804684943360936988710 ~2003
18046854131082811247911 ~2004
1804699943360939988710 ~2003
180476701111911462272712 ~2007
18049296971082957818311 ~2004
1804959239360991847910 ~2003
18049660491443972839311 ~2005
1805035091361007018310 ~2003
18050482611444038608911 ~2005
1805090051361018010310 ~2003
1805190059361038011910 ~2003
1805236871361047374310 ~2003
1805251691361050338310 ~2003
18053785011444302800911 ~2005
1805510303361102060710 ~2003
Home
4.768.925 digits
e-mail
25-05-04