Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1795617311359123462310 ~2003
179561914114364953128112 ~2007
17956638531077398311911 ~2004
1795694903359138980710 ~2003
1795712939359142587910 ~2003
1795737011359147402310 ~2003
1795826423359165284710 ~2003
1795881911359176382310 ~2003
1795960559359192111910 ~2003
17959882211077592932711 ~2004
17960866791436869343311 ~2005
1796102111359220422310 ~2003
17961502739699211474311 ~2007
17961591611077695496711 ~2004
179616040920116996580912 ~2008
1796196299359239259910 ~2003
17962258811077735528711 ~2004
1796235923359247184710 ~2003
1796371799359274359910 ~2003
17963824811077829488711 ~2004
17964460611077867636711 ~2004
1796460863359292172710 ~2003
17964868971437189517711 ~2005
1796519519359303903910 ~2003
17965936193233868514311 ~2006
Exponent Prime Factor Digits Year
1796641943359328388710 ~2003
1796773859359354771910 ~2003
1796882579359376515910 ~2003
17969721171078183270311 ~2004
17969875372515782551911 ~2005
1797006611359401322310 ~2003
1797158543359431708710 ~2003
1797266951359453390310 ~2003
17973019371437841549711 ~2005
17973159671797315967111 ~2005
1797317339359463467910 ~2003
17973733211078423992711 ~2004
1797379019359475803910 ~2003
17974464591437957167311 ~2005
1797452903359490580710 ~2003
1797682751359536550310 ~2003
1797684299359536859910 ~2003
1797703991359540798310 ~2003
1797704411359540882310 ~2003
1797713171359542634310 ~2003
17977399071438191925711 ~2005
1797796151359559230310 ~2003
17980060273236410848711 ~2006
1798043339359608667910 ~2003
17980506971078830418311 ~2004
Exponent Prime Factor Digits Year
1798094219359618843910 ~2003
1798152731359630546310 ~2003
17981580734315579375311 ~2006
17982091991798209199111 ~2005
17982577873236864016711 ~2006
17983097811078985868711 ~2004
1798314971359662994310 ~2003
1798361699359672339910 ~2003
1798370303359674060710 ~2003
17983860971079031658311 ~2004
1798410599359682119910 ~2003
17984136411079048184711 ~2004
17986163174316679160911 ~2006
1798679903359735980710 ~2003
1798750391359750078310 ~2003
17988314831798831483111 ~2005
1798927379359785475910 ~2003
1798953743359790748710 ~2003
1799023931359804786310 ~2003
1799032919359806583910 ~2003
1799047199359809439910 ~2003
17991091611079465496711 ~2004
1799177903359835580710 ~2003
1799185799359837159910 ~2003
1799214083359842816710 ~2003
Exponent Prime Factor Digits Year
1799215499359843099910 ~2003
17993048533958470676711 ~2006
1799317031359863406310 ~2003
1799349971359869994310 ~2003
1799434991359886998310 ~2003
17994644771079678686311 ~2004
1799540531359908106310 ~2003
1799576171359915234310 ~2003
1799677163359935432710 ~2003
1799838731359967746310 ~2003
1799952419359990483910 ~2003
1799968091359993618310 ~2003
1799991131359998226310 ~2003
18000470211440037616911 ~2005
1800143291360028658310 ~2003
18001461891440116951311 ~2005
1800155459360031091910 ~2003
18001727572520241859911 ~2005
18002563011080153780711 ~2004
1800297599360059519910 ~2003
1800322103360064420710 ~2003
1800323363360064672710 ~2003
1800369611360073922310 ~2003
18004043177201617268111 ~2006
1800411143360082228710 ~2003
Home
4.768.925 digits
e-mail
25-05-04