Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1042193819208438763910 ~2001
1042265891208453178310 ~2001
1042299743208459948710 ~2001
1042300331208460066310 ~2001
1042353839208470767910 ~2001
1042416359208483271910 ~2001
1042442341625465404710 ~2003
1042457501833966000910 ~2003
1042463711208492742310 ~2001
1042479433625487659910 ~2003
10424912091459487692711 ~2004
1042503131208500626310 ~2001
10425110831042511083111 ~2003
1042512239208502447910 ~2001
1042526879208505375910 ~2001
10425382972502091912911 ~2004
1042540217625524130310 ~2003
1042542659208508531910 ~2001
1042572983208514596710 ~2001
1042579199208515839910 ~2001
1042594739208518947910 ~2001
1042676279208535255910 ~2001
1042688833625613299910 ~2003
1042757603208551520710 ~2001
1042799843208559968710 ~2001
Exponent Prime Factor Digits Year
1042809479208561895910 ~2001
1042814939208562987910 ~2001
1042830863208566172710 ~2001
1042895591834316472910 ~2003
1042903613625742167910 ~2003
1042910699208582139910 ~2001
1042917371208583474310 ~2001
1042917437834333949710 ~2003
10429805414797710488711 ~2005
1042991759208598351910 ~2001
1043008943208601788710 ~2001
1043025299208605059910 ~2001
1043047091208609418310 ~2001
1043067341834453872910 ~2003
1043085623208617124710 ~2001
1043139899208627979910 ~2001
1043149697625889818310 ~2003
1043163599834530879310 ~2003
1043184071208636814310 ~2001
1043189057834551245710 ~2003
1043201459208640291910 ~2001
10432633493129790047111 ~2004
1043267111208653422310 ~2001
10432709514381737994311 ~2005
1043336057834668845710 ~2003
Exponent Prime Factor Digits Year
1043339789834671831310 ~2003
10433413733130024119111 ~2004
1043376599208675319910 ~2001
1043410013626046007910 ~2003
1043503523208700704710 ~2001
1043532569834826055310 ~2003
1043579111208715822310 ~2001
1043593223208718644710 ~2001
1043597183208719436710 ~2001
1043635259834908207310 ~2003
1043659439208731887910 ~2001
1043662883208732576710 ~2001
1043691443208738288710 ~2001
1043714123208742824710 ~2001
1043724611208744922310 ~2001
1043758811208751762310 ~2001
1043769641626261784710 ~2003
1043793323208758664710 ~2001
1043800151208760030310 ~2001
10438522971461393215911 ~2004
1043857393626314435910 ~2003
1043935559208787111910 ~2001
10439594471043959447111 ~2003
1043979977626387986310 ~2003
1043996351208799270310 ~2001
Exponent Prime Factor Digits Year
1044016511208803302310 ~2001
1044037691208807538310 ~2001
10440408431044040843111 ~2003
1044043333626425999910 ~2003
1044165803208833160710 ~2001
1044193259208838651910 ~2001
1044212303208842460710 ~2001
10442905914386020482311 ~2005
1044394979208878995910 ~2001
1044431681626659008710 ~2003
1044439559208887911910 ~2001
1044467351208893470310 ~2001
1044506663208901332710 ~2001
1044536477835629181710 ~2003
1044562061626737236710 ~2003
1044571211208914242310 ~2001
1044594539208918907910 ~2001
1044628943208925788710 ~2001
1044634271208926854310 ~2001
1044673379208934675910 ~2001
1044769991208953998310 ~2001
1044786311208957262310 ~2001
1044796163208959232710 ~2001
1044888253626932951910 ~2003
1044893303208978660710 ~2001
Home
5.187.277 digits
e-mail
25-11-17