Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
963089639192617927910 ~2001
963093359192618671910 ~2001
963124703192624940710 ~2001
963154537577892722310 ~2002
963182459192636491910 ~2001
963184091192636818310 ~2001
963200123192640024710 ~2001
963225143192645028710 ~2001
963240107770592085710 ~2003
963242531192648506310 ~2001
9632539032311809367311 ~2004
963263459192652691910 ~2001
963265379192653075910 ~2001
963339059770671247310 ~2003
963340523192668104710 ~2001
9633426292312022309711 ~2004
963359471192671894310 ~2001
963368099192673619910 ~2001
963373259192674651910 ~2001
963373979192674795910 ~2001
963418979192683795910 ~2001
963441571963441571110 ~2003
963469511192693902310 ~2001
963469763192693952710 ~2001
963479513578087707910 ~2002
Exponent Prime Factor Digits Year
963562331192712466310 ~2001
963603241578161944710 ~2002
963610871192722174310 ~2001
963618371192723674310 ~2001
963641663192728332710 ~2001
963668351192733670310 ~2001
963668801770935040910 ~2003
963681821578209092710 ~2002
963703571192740714310 ~2001
963708071192741614310 ~2001
963745109770996087310 ~2003
963761219771008975310 ~2003
963776591192755318310 ~2001
963779783192755956710 ~2001
963802361771041888910 ~2003
9638044331542087092911 ~2003
963818951192763790310 ~2001
963897293578338375910 ~2002
963921251192784250310 ~2001
963930221578358132710 ~2002
963954899192790979910 ~2001
9640014191735202554311 ~2004
9640508831542481412911 ~2003
964051559192810311910 ~2001
964056683192811336710 ~2001
Exponent Prime Factor Digits Year
964068541578441124710 ~2002
964076819192815363910 ~2001
9641029494627694155311 ~2005
964130543192826108710 ~2001
9641458912506779316711 ~2004
964172519192834503910 ~2001
964175291192835058310 ~2001
964179179192835835910 ~2001
964182899192836579910 ~2001
964193903192838780710 ~2001
964218803192843760710 ~2001
964229639192845927910 ~2001
964231571192846314310 ~2001
964256801578554080710 ~2002
964286243192857248710 ~2001
964401803192880360710 ~2001
964433801578660280710 ~2002
964435481771548384910 ~2003
964439041578663424710 ~2002
964440359192888071910 ~2001
964501037578700622310 ~2002
964542599192908519910 ~2001
964559003192911800710 ~2001
9645639671736215140711 ~2004
9645732291350402520711 ~2003
Exponent Prime Factor Digits Year
964605923192921184710 ~2001
964637279192927455910 ~2001
964640063192928012710 ~2001
964670279192934055910 ~2001
964675253578805151910 ~2002
964680551192936110310 ~2001
964683971192936794310 ~2001
964692959192938591910 ~2001
964702379192940475910 ~2001
964707911192941582310 ~2001
964708091192941618310 ~2001
964771583192954316710 ~2001
964800899192960179910 ~2001
964862543192972508710 ~2001
964872203192974440710 ~2001
964916759192983351910 ~2001
964944443192988888710 ~2001
964997861771998288910 ~2003
965007383193001476710 ~2001
965023571193004714310 ~2001
965050643193010128710 ~2001
965095841579057504710 ~2002
965151983193030396710 ~2001
965175859965175859110 ~2003
965200139772160111310 ~2003
Home
5.247.179 digits
e-mail
25-12-14