Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1598585591319717118310 ~2003
1598601503319720300710 ~2003
15986099231598609923111 ~2005
1598618891319723778310 ~2003
1598670239319734047910 ~2003
1598812751319762550310 ~2003
15988136477674305505711 ~2006
1598909363319781872710 ~2003
1598911031319782206310 ~2003
1598935361959361216710 ~2004
1598940851319788170310 ~2003
1599019871319803974310 ~2003
1599108779319821755910 ~2003
1599126059319825211910 ~2003
1599226859319845371910 ~2003
15992426571279394125711 ~2004
1599248459319849691910 ~2003
1599297881959578728710 ~2004
1599362003319872400710 ~2003
1599424223319884844710 ~2003
159943029721752252039312 ~2007
1599538163319907632710 ~2003
15997247391279779791311 ~2004
1599764399319952879910 ~2003
1599792983319958596710 ~2003
Exponent Prime Factor Digits Year
1599850523319970104710 ~2003
1599858119319971623910 ~2003
15998638611279891088911 ~2004
1599878303319975660710 ~2003
1600053131320010626310 ~2003
1600053683320010736710 ~2003
1600124723320024944710 ~2003
160020869924323172224912 ~2007
16003055991280244479311 ~2004
1600339043320067808710 ~2003
160034864314403137787112 ~2007
1600376819320075363910 ~2003
1600387163320077432710 ~2003
1600516031320103206310 ~2003
1600526111320105222310 ~2003
1600557551320111510310 ~2003
1600559123320111824710 ~2003
1600567621960340572710 ~2004
1600635383320127076710 ~2003
16006408491280512679311 ~2004
1600657139320131427910 ~2003
1600723499320144699910 ~2003
1600753943320150788710 ~2003
1600892231320178446310 ~2003
1600900799320180159910 ~2003
Exponent Prime Factor Digits Year
1600900979320180195910 ~2003
1600945103320189020710 ~2003
1601014823320202964710 ~2003
16010158371280812669711 ~2004
16010898493522397667911 ~2005
1601100971320220194310 ~2003
16011101871280888149711 ~2004
1601203517960722110310 ~2004
16013230511601323051111 ~2005
1601323931320264786310 ~2003
1601324099320264819910 ~2003
1601397353960838411910 ~2004
1601408999320281799910 ~2003
1601429723320285944710 ~2003
1601457673960874603910 ~2004
1601459603320291920710 ~2003
1601460323320292064710 ~2003
1601466263320293252710 ~2003
16015590732562494516911 ~2005
1601569751320313950310 ~2003
1601685083320337016710 ~2003
1601703721961022232710 ~2004
1601865299320373059910 ~2003
1601871203320374240710 ~2003
1601872619320374523910 ~2003
Exponent Prime Factor Digits Year
1601879039320375807910 ~2003
1601927963320385592710 ~2003
1601949803320389960710 ~2003
1601953343320390668710 ~2003
1601968217961180930310 ~2004
160199126911534337136912 ~2007
1602023639320404727910 ~2003
1602045253961227151910 ~2004
1602176399320435279910 ~2003
1602197279320439455910 ~2003
1602224699320444939910 ~2003
16022707214806812163111 ~2006
1602397477961438486310 ~2004
1602401459320480291910 ~2003
1602437579320487515910 ~2003
16025546091282043687311 ~2004
1602576011320515202310 ~2003
16026860874166983826311 ~2006
1602734123320546824710 ~2003
1602742343320548468710 ~2003
1602746777961648066310 ~2004
16028027572243923859911 ~2005
1602834251320566850310 ~2003
1602892883320578576710 ~2003
1602922319320584463910 ~2003
Home
4.724.182 digits
e-mail
25-04-13