Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1706455319341291063910 ~2003
1706490143341298028710 ~2003
17065272411023916344711 ~2004
1706550311341310062310 ~2003
17065738371023944302311 ~2004
1706579723341315944710 ~2003
17065896371023953782311 ~2004
1706594843341318968710 ~2003
1706605619341321123910 ~2003
17066519771023991186311 ~2004
1706705411341341082310 ~2003
17067196611365375728911 ~2005
1706726831341345366310 ~2003
17067766011365421280911 ~2005
17067900531024074031911 ~2004
17068041797168577551911 ~2006
1706878763341375752710 ~2003
1706899283341379856710 ~2003
1706902079341380415910 ~2003
17071301691365704135311 ~2005
1707131291341426258310 ~2003
1707137891341427578310 ~2003
1707168383341433676710 ~2003
1707182591341436518310 ~2003
1707217859341443571910 ~2003
Exponent Prime Factor Digits Year
1707224819341444963910 ~2003
1707237443341447488710 ~2003
1707239819341447963910 ~2003
1707335783341467156710 ~2003
1707360251341472050310 ~2003
1707389459341477891910 ~2003
17074012571024440754311 ~2004
1707503351341500670310 ~2003
1707512459341502491910 ~2003
1707526031341505206310 ~2003
1707571223341514244710 ~2003
1707654671341530934310 ~2003
17076626112732260177711 ~2005
1707707219341541443910 ~2003
1707731171341546234310 ~2003
1707767543341553508710 ~2003
1707877499341575499910 ~2003
1707938399341587679910 ~2003
1707954119341590823910 ~2003
17079807731024788463911 ~2004
17080005615124001683111 ~2006
1708016339341603267910 ~2003
1708083719341616743910 ~2003
1708246643341649328710 ~2003
17082508213758151806311 ~2006
Exponent Prime Factor Digits Year
1708272983341654596710 ~2003
17083306071366664485711 ~2005
1708342211341668442310 ~2003
1708354079341670815910 ~2003
17083558491366684679311 ~2005
1708444931341688986310 ~2003
1708511699341702339910 ~2003
1708698539341739707910 ~2003
1708787183341757436710 ~2003
1708793279341758655910 ~2003
1708803683341760736710 ~2003
1708856543341771308710 ~2003
17088766931025326015911 ~2004
1708886339341777267910 ~2003
17090483811367238704911 ~2005
1709084879341816975910 ~2003
1709122799341824559910 ~2003
1709257463341851492710 ~2003
1709292779341858555910 ~2003
1709342399341868479910 ~2003
1709506091341901218310 ~2003
1709514791341902958310 ~2003
1709517539341903507910 ~2003
1709531003341906200710 ~2003
170958936112309043399312 ~2007
Exponent Prime Factor Digits Year
17095970335128791099111 ~2006
170961334112309216055312 ~2007
1709656703341931340710 ~2003
1709698379341939675910 ~2003
17097637931025858275911 ~2004
1709770763341954152710 ~2003
1709960111341992022310 ~2003
17099619771367969581711 ~2005
17100480317182201730311 ~2006
17100686234104164695311 ~2006
1710100079342020015910 ~2003
17101464411368117152911 ~2005
1710327803342065560710 ~2003
1710370043342074008710 ~2003
1710430583342086116710 ~2003
1710498623342099724710 ~2003
17105929011368474320911 ~2005
1710630143342126028710 ~2003
1710665279342133055910 ~2003
17107626371026457582311 ~2004
17108185739580584008911 ~2007
17108343194106002365711 ~2006
1710848831342169766310 ~2003
17108722574106093416911 ~2006
17109445131026566707911 ~2004
Home
4.768.925 digits
e-mail
25-05-04