Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
800997401640797920910 ~2002
801030299160206059910 ~2001
8010413631922499271311 ~2003
801057359160211471910 ~2001
801059557480635734310 ~2002
801067831801067831110 ~2002
801079931160215986310 ~2001
801090971160218194310 ~2001
801104281480662568710 ~2002
8011102793364663171911 ~2004
801117797480670678310 ~2002
801127583160225516710 ~2001
801130717480678430310 ~2002
801147059160229411910 ~2001
801182831160236566310 ~2001
8011910034005955015111 ~2004
801204983160240996710 ~2001
801231971160246394310 ~2001
801328259160265651910 ~2001
801346699801346699110 ~2002
801355991160271198310 ~2001
801366491160273298310 ~2001
801401291160280258310 ~2001
801419051160283810310 ~2001
801433823160286764710 ~2001
Exponent Prime Factor Digits Year
801467963160293592710 ~2001
801470051160294010310 ~2001
801493559160298711910 ~2001
801496523160299304710 ~2001
801502463160300492710 ~2001
801559691160311938310 ~2001
801567983160313596710 ~2001
801574751160314950310 ~2001
801578699160315739910 ~2001
801671459160334291910 ~2001
801675431160335086310 ~2001
801679919160335983910 ~2001
801707807641366245710 ~2002
801715919160343183910 ~2001
801722111160344422310 ~2001
801735911160347182310 ~2001
801741001481044600710 ~2002
801741617641393293710 ~2002
801757571160351514310 ~2001
801768101641414480910 ~2002
801809111160361822310 ~2001
801834793481100875910 ~2002
801875953481125571910 ~2002
801890651160378130310 ~2001
801905171160381034310 ~2001
Exponent Prime Factor Digits Year
801915581641532464910 ~2002
8019248831283079812911 ~2003
801934823160386964710 ~2001
802025639160405127910 ~2001
802071059160414211910 ~2001
802083371160416674310 ~2001
802107599160421519910 ~2001
802124423160424884710 ~2001
802170599160434119910 ~2001
8021756031925221447311 ~2003
802214183160442836710 ~2001
802215959160443191910 ~2001
802222703160444540710 ~2001
802231019160446203910 ~2001
8022435771123141007911 ~2003
802256249641804999310 ~2002
802265873481359523910 ~2002
802286063160457212710 ~2001
8022903891925496933711 ~2003
802296083160459216710 ~2001
802296503160459300710 ~2001
802313423160462684710 ~2001
802328411641862728910 ~2002
802337183160467436710 ~2001
802356341641885072910 ~2002
Exponent Prime Factor Digits Year
802373057481423834310 ~2002
802384397481430638310 ~2002
802389353481433611910 ~2002
802395313481437187910 ~2002
802410923160482184710 ~2001
802416599160483319910 ~2001
802425487802425487110 ~2002
802426853481456111910 ~2002
802435499160487099910 ~2001
802451483160490296710 ~2001
802451579160490315910 ~2001
8024637432728376726311 ~2004
802487633481492579910 ~2002
802511821481507092710 ~2002
802543691160508738310 ~2001
802565399160513079910 ~2001
802597253481558351910 ~2002
802612883160522576710 ~2001
802671011160534202310 ~2001
802703939160540787910 ~2001
802707539160541507910 ~2001
802724171160544834310 ~2001
802745903160549180710 ~2001
802747271160549454310 ~2001
802774751160554950310 ~2001
Home
5.307.017 digits
e-mail
26-01-11