Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1652695621991617372710 ~2004
1652796791330559358310 ~2003
1652810531330562106310 ~2003
1652848871330569774310 ~2003
1652853539330570707910 ~2003
1653020711330604142310 ~2003
16531348271653134827111 ~2005
1653205583330641116710 ~2003
1653370583330674116710 ~2003
1653407771330681554310 ~2003
1653491951330698390310 ~2003
1653507203330701440710 ~2003
1653519971330703994310 ~2003
1653527483330705496710 ~2003
16535482611322838608911 ~2004
1653550499330710099910 ~2003
1653558143330711628710 ~2003
16535746671322859733711 ~2004
1653641123330728224710 ~2003
16536657776283929952711 ~2006
1653685991330737198310 ~2003
1653691441992214864710 ~2004
1653814763330762952710 ~2003
1653823883330764776710 ~2003
16539322391653932239111 ~2005
Exponent Prime Factor Digits Year
1653932411330786482310 ~2003
1653944101992366460710 ~2004
1654160021992496012710 ~2004
1654188023330837604710 ~2003
1654225799330845159910 ~2003
1654236161992541696710 ~2004
1654283531330856706310 ~2003
1654369117992621470310 ~2004
16544530191323562415311 ~2004
16545543111323643448911 ~2004
16546374711323709976911 ~2004
16546979511323758360911 ~2004
1654699861992819916710 ~2004
16547092611323767408911 ~2004
16547200693640384151911 ~2006
1654821251330964250310 ~2003
1654835639330967127910 ~2003
1655003459331000691910 ~2003
1655065823331013164710 ~2003
1655079983331015996710 ~2003
1655098793993059275910 ~2004
1655103959331020791910 ~2003
1655307551331061510310 ~2003
1655430443331086088710 ~2003
1655474039331094807910 ~2003
Exponent Prime Factor Digits Year
1655494199331098839910 ~2003
1655518499331103699910 ~2003
16555462512979983251911 ~2005
1655561639331112327910 ~2003
1655577611331115522310 ~2003
1655640817993384490310 ~2004
16556593371324527469711 ~2004
1655664551331132910310 ~2003
16557557811324604624911 ~2004
1655759593993455755910 ~2004
1655785259331157051910 ~2003
1655786591331157318310 ~2003
1655838659331167731910 ~2003
1655852519331170503910 ~2003
1655871839331174367910 ~2003
1655949623331189924710 ~2003
1656008219331201643910 ~2003
1656010991331202198310 ~2003
1656028331331205666310 ~2003
1656048263331209652710 ~2003
1656057059331211411910 ~2003
1656070211331214042310 ~2003
16561065471324885237711 ~2004
1656168911331233782310 ~2003
1656245639331249127910 ~2003
Exponent Prime Factor Digits Year
1656258683331251736710 ~2003
1656269963331253992710 ~2003
1656271079331254215910 ~2003
1656396233993837739910 ~2004
1656429497993857698310 ~2004
16564769298944975416711 ~2007
1656482843331296568710 ~2003
16565349472981762904711 ~2005
1656617519331323503910 ~2003
1656631421993978852710 ~2004
1656636911331327382310 ~2003
1656664021993998412710 ~2004
1656714853994028911910 ~2004
16568617493976468197711 ~2006
1656884233994130539910 ~2004
1657056853994234111910 ~2004
1657112603331422520710 ~2003
1657247639331449527910 ~2003
1657257839331451567910 ~2003
1657377119331475423910 ~2003
16573824591325905967311 ~2004
1657388833994433299910 ~2004
1657436939331487387910 ~2003
1657536911331507382310 ~2003
1657644239331528847910 ~2003
Home
4.768.925 digits
e-mail
25-05-04