Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1648252583329650516710 ~2003
1648267919329653583910 ~2003
1648306871329661374310 ~2003
1648372091329674418310 ~2003
1648534403329706880710 ~2003
1648555211329711042310 ~2003
1648794299329758859910 ~2003
1648799963329759992710 ~2003
1648800431329760086310 ~2003
1648851251329770250310 ~2003
1648943771329788754310 ~2003
1648974851329794970310 ~2003
1649014751329802950310 ~2003
1649045231329809046310 ~2003
1649074331329814866310 ~2003
1649086091329817218310 ~2003
1649086823329817364710 ~2003
16491035533957848527311 ~2006
1649128513989477107910 ~2004
1649161541989496924710 ~2004
1649324063329864812710 ~2003
1649359139329871827910 ~2003
1649432117989659270310 ~2004
16495107892309315104711 ~2005
16495136832639221892911 ~2005
Exponent Prime Factor Digits Year
1649557037989734222310 ~2004
16495722891319657831311 ~2004
1649589731329917946310 ~2003
1649609411329921882310 ~2003
1649615699329923139910 ~2003
1649617751329923550310 ~2003
1649656139329931227910 ~2003
16497060111319764808911 ~2004
1649713001989827800710 ~2004
1649715443329943088710 ~2003
1649736443329947288710 ~2003
1649770631329954126310 ~2003
1649816879329963375910 ~2003
1649845283329969056710 ~2003
1649883671329976734310 ~2003
1649921219329984243910 ~2003
1649923031329984606310 ~2003
16499478672639916587311 ~2005
1649979337989987602310 ~2004
1649993759329998751910 ~2003
1650037619330007523910 ~2003
1650058703330011740710 ~2003
1650111731330022346310 ~2003
1650112979330022595910 ~2003
16501825195280584060911 ~2006
Exponent Prime Factor Digits Year
1650193739330038747910 ~2003
1650215639330043127910 ~2003
1650240941990144564710 ~2004
1650390239330078047910 ~2003
1650410543330082108710 ~2003
1650468119330093623910 ~2003
1650522613990313567910 ~2004
1650523153990313891910 ~2004
16506496015282078723311 ~2006
165068875913535647823912 ~2007
1650706973990424183910 ~2004
1650830939330166187910 ~2003
1650861923330172384710 ~2003
1650871511330174302310 ~2003
1650927539330185507910 ~2003
1650950519330190103910 ~2003
1651006613990603967910 ~2004
1651053011330210602310 ~2003
1651083601990650160710 ~2004
16511276591651127659111 ~2005
1651145231330229046310 ~2003
1651235123330247024710 ~2003
1651244099330248819910 ~2003
1651256933990754159910 ~2004
16514198932311987850311 ~2005
Exponent Prime Factor Digits Year
1651504859330300971910 ~2003
1651526977990916186310 ~2004
1651535657990921394310 ~2004
1651555991330311198310 ~2003
1651561451330312290310 ~2003
1651578899330315779910 ~2003
16515978911651597891111 ~2005
16516441937597563287911 ~2006
1651697843330339568710 ~2003
1651718819330343763910 ~2003
16517229591321378367311 ~2004
1651724699330344939910 ~2003
1651741823330348364710 ~2003
1651744631330348926310 ~2003
1651840163330368032710 ~2003
1652036723330407344710 ~2003
1652066711330413342310 ~2003
1652187419330437483910 ~2003
1652245403330449080710 ~2003
1652341703330468340710 ~2003
1652378963330475792710 ~2003
16524048072643847691311 ~2005
1652493191330498638310 ~2003
1652531819330506363910 ~2003
16526874111322149928911 ~2004
Home
4.768.925 digits
e-mail
25-05-04