Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1341983579268396715910 ~2002
13420198072415635652711 ~2005
1342116551268423310310 ~2002
1342118639268423727910 ~2002
13421563512147450161711 ~2004
1342223639268444727910 ~2002
1342284061805370436710 ~2003
13422946491073835719311 ~2004
134231721758793494104712 ~2008
1342335353805401211910 ~2003
1342397099268479419910 ~2002
1342472101805483260710 ~2003
13425128175370051268111 ~2005
1342580003268516000710 ~2002
1342616591268523318310 ~2002
1342621739268524347910 ~2002
1342657919268531583910 ~2002
1342669943268533988710 ~2002
13427163411074173072911 ~2004
1342716541805629924710 ~2003
1342724543268544908710 ~2002
134273088762571259334312 ~2008
1342747013805648207910 ~2003
1342780091268556018310 ~2002
1342854731268570946310 ~2002
Exponent Prime Factor Digits Year
1342864693805718815910 ~2003
1342912199268582439910 ~2002
1342929383268585876710 ~2002
1342939043268587808710 ~2002
1342968359268593671910 ~2002
1342984859268596971910 ~2002
13430018119669613039311 ~2006
1343014499268602899910 ~2002
1343100299268620059910 ~2002
1343125643268625128710 ~2002
1343169419268633883910 ~2002
1343207581805924548710 ~2003
1343238973805943383910 ~2003
1343311451268662290310 ~2002
13433360695104677062311 ~2005
1343425091268685018310 ~2002
1343434283268686856710 ~2002
1343447879268689575910 ~2002
13436258172149801307311 ~2004
1343633783268726756710 ~2002
13436568377255746919911 ~2006
1343763719268752743910 ~2002
1343775539268755107910 ~2002
1343824043268764808710 ~2002
1343881631268776326310 ~2002
Exponent Prime Factor Digits Year
1343928161806356896710 ~2003
1343978963268795792710 ~2002
13439799431343979943111 ~2004
13440464811075237184911 ~2004
134412193911828273063312 ~2006
13441327913494745256711 ~2005
13441490696451915531311 ~2006
1344177083268835416710 ~2002
1344192757806515654310 ~2003
1344198539268839707910 ~2002
1344208199268841639910 ~2002
1344252179268850435910 ~2002
1344327191268865438310 ~2002
1344416039268883207910 ~2002
134446291916133555028112 ~2007
1344519311268903862310 ~2002
13445246893226859253711 ~2005
1344531157806718694310 ~2003
13445678112151308497711 ~2005
13445713315647199590311 ~2006
13445953934033786179111 ~2005
1344604619268920923910 ~2002
1344641339268928267910 ~2002
1344680783268936156710 ~2002
1344763153806857891910 ~2003
Exponent Prime Factor Digits Year
1344770243268954048710 ~2002
1344771563268954312710 ~2002
1344849791268969958310 ~2002
13448639111344863911111 ~2004
1344885383268977076710 ~2002
1344924071268984814310 ~2002
1344962051268992410310 ~2002
1345007123269001424710 ~2002
1345011599269002319910 ~2002
1345056851269011370310 ~2002
13450724471345072447111 ~2004
1345152023269030404710 ~2002
1345160039269032007910 ~2002
13451727471076138197711 ~2004
1345178171269035634310 ~2002
13451942511076155400911 ~2004
1345216979269043395910 ~2002
13453743673228898480911 ~2005
1345423379269084675910 ~2002
1345448711269089742310 ~2002
1345478377807287026310 ~2003
1345508051269101610310 ~2002
1345510643269102128710 ~2002
1345550579269110115910 ~2002
1345687919269137583910 ~2002
Home
4.768.925 digits
e-mail
25-05-04