Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17296933971383754717711 ~2005
17297272911383781832911 ~2005
1729777691345955538310 ~2003
1729834943345966988710 ~2003
1729838531345967706310 ~2003
17298629931037917795911 ~2004
1729870991345974198310 ~2003
1729876559345975311910 ~2003
1729895543345979108710 ~2003
1729907891345981578310 ~2003
1729920719345984143910 ~2003
1730020823346004164710 ~2003
1730028431346005686310 ~2003
1730028803346005760710 ~2003
1730075783346015156710 ~2003
1730115791346023158310 ~2003
17301382791384110623311 ~2005
17301554511384124360911 ~2005
1730227259346045451910 ~2003
17302976234152714295311 ~2006
17303142175190942651111 ~2006
1730356811346071362310 ~2003
1730414519346082903910 ~2003
17304324971038259498311 ~2004
1730480159346096031910 ~2003
Exponent Prime Factor Digits Year
17306353398307049627311 ~2007
1730652851346130570310 ~2003
1730703059346140611910 ~2003
17307641591730764159111 ~2005
1730828999346165799910 ~2003
1730876519346175303910 ~2003
17309220011038553200711 ~2004
1730937011346187402310 ~2003
173105852351239332280912 ~2008
1731064883346212976710 ~2003
17311194193116014954311 ~2005
1731125471346225094310 ~2003
1731129899346225979910 ~2003
1731148091346229618310 ~2003
1731163223346232644710 ~2003
17312066771038724006311 ~2004
17313710991385096879311 ~2005
1731459419346291883910 ~2003
1731462851346292570310 ~2003
1731542783346308556710 ~2003
17315541295194662387111 ~2006
1731573143346314628710 ~2003
17315806071385264485711 ~2005
1731760031346352006310 ~2003
1731853451346370690310 ~2003
Exponent Prime Factor Digits Year
17318839971385507197711 ~2005
1731919391346383878310 ~2003
1731957371346391474310 ~2003
17319576771039174606311 ~2004
1732068479346413695910 ~2003
1732098359346419671910 ~2003
17321245671385699653711 ~2005
1732211951346442390310 ~2003
17322642771039358566311 ~2004
17323047977968602066311 ~2006
17323690434504159511911 ~2006
17323860771039431646311 ~2004
17324037131039442227911 ~2004
17324090931039445455911 ~2004
17324218095197265427111 ~2006
1732451411346490282310 ~2003
1732456919346491383910 ~2003
1732482623346496524710 ~2003
17325148031732514803111 ~2005
1732522019346504403910 ~2003
1732639019346527803910 ~2003
1732655783346531156710 ~2003
1732729319346545863910 ~2003
1732742351346548470310 ~2003
1732804523346560904710 ~2003
Exponent Prime Factor Digits Year
1732875899346575179910 ~2003
17331313331039878799911 ~2004
17331833931039910035911 ~2004
1733200751346640150310 ~2003
1733335979346667195910 ~2003
1733420519346684103910 ~2003
1733423231346684646310 ~2003
1733442059346688411910 ~2003
17334463811040067828711 ~2004
1733481923346696384710 ~2003
17335243615200573083111 ~2006
1733630903346726180710 ~2003
1733635331346727066310 ~2003
1733688371346737674310 ~2003
1733722751346744550310 ~2003
17337251991386980159311 ~2005
1733840063346768012710 ~2003
1733872571346774514310 ~2003
1733889359346777871910 ~2003
1733952491346790498310 ~2003
17339568771040374126311 ~2004
1733987603346797520710 ~2003
1734039623346807924710 ~2003
1734074483346814896710 ~2003
1734074939346814987910 ~2003
Home
4.768.925 digits
e-mail
25-05-04