Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1398591839279718367910 ~2002
13987556211119004496911 ~2004
1398771593839262955910 ~2004
1398791939279758387910 ~2002
1398819841839291904710 ~2004
1398822251279764450310 ~2002
13989216113637196188711 ~2005
1399061099279812219910 ~2002
13991372533078101956711 ~2005
13991802431399180243111 ~2004
1399223123279844624710 ~2002
1399233817839540290310 ~2004
1399234163279846832710 ~2002
1399237883279847576710 ~2002
13992916791119433343311 ~2004
1399319711279863942310 ~2002
1399351631279870326310 ~2002
13994406071399440607111 ~2004
1399468439279893687910 ~2002
1399503863279900772710 ~2002
139950763124631334305712 ~2007
1399528283279905656710 ~2002
1399647853839788711910 ~2004
1399649063279929812710 ~2002
1399695359279939071910 ~2002
Exponent Prime Factor Digits Year
1399697699279939539910 ~2002
1399706723279941344710 ~2002
13997224371119777949711 ~2004
1399747763279949552710 ~2002
1399769291279953858310 ~2002
1399770923279954184710 ~2002
1399860179279972035910 ~2002
1400045291280009058310 ~2002
1400078951280015790310 ~2002
1400080861840048516710 ~2004
1400098943280019788710 ~2002
1400153879280030775910 ~2002
1400169899280033979910 ~2002
14001757011120140560911 ~2004
1400199011280039802310 ~2002
1400207423280041484710 ~2002
14002125591120170047311 ~2004
1400242643280048528710 ~2002
1400331503280066300710 ~2002
1400347523280069504710 ~2002
1400436899280087379910 ~2002
1400441831280088366310 ~2002
1400463637840278182310 ~2004
140051225910083688264912 ~2006
1400556791280111358310 ~2002
Exponent Prime Factor Digits Year
1400570903280114180710 ~2002
1400625683280125136710 ~2002
1400630351280126070310 ~2002
1400653283280130656710 ~2002
1400676961840406176710 ~2004
1400681783280136356710 ~2002
14007396711120591736911 ~2004
1400769659280153931910 ~2002
1400776859280155371910 ~2002
14007808934202342679111 ~2005
1400806223280161244710 ~2002
1400809037840485422310 ~2004
1400844551280168910310 ~2002
1400884211280176842310 ~2002
1400896043280179208710 ~2002
14008967091120717367311 ~2004
14009178833642386495911 ~2005
1400923259280184651910 ~2002
1400936123280187224710 ~2002
14010287571120823005711 ~2004
1401073211280214642310 ~2002
1401125903280225180710 ~2002
1401137819280227563910 ~2002
1401165851280233170310 ~2002
1401221903280244380710 ~2002
Exponent Prime Factor Digits Year
1401263351280252670310 ~2002
1401345251280269050310 ~2002
1401363179280272635910 ~2002
1401377231280275446310 ~2002
1401386579280277315910 ~2002
1401392939280278587910 ~2002
14014619691121169575311 ~2004
1401476099280295219910 ~2002
14014774014204432203111 ~2005
1401499763280299952710 ~2002
1401502439280300487910 ~2002
1401514091280302818310 ~2002
14015192337568203858311 ~2006
14015461032242473764911 ~2005
1401685931280337186310 ~2002
14016961676728141601711 ~2006
1401727991280345598310 ~2002
1401737537841042522310 ~2004
14018128611121450288911 ~2004
1401817801841090680710 ~2004
1401838103280367620710 ~2002
1401995993841197595910 ~2004
1402102451280420490310 ~2002
14021087514486748003311 ~2005
1402114979280422995910 ~2002
Home
4.768.925 digits
e-mail
25-05-04