Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1402135151280427030310 ~2002
14021737973365217112911 ~2005
1402223939280444787910 ~2002
1402261799280452359910 ~2002
1402276441841365864710 ~2004
1402278599280455719910 ~2002
1402327691280465538310 ~2002
1402376777841426066310 ~2004
1402392191280478438310 ~2002
1402405079280481015910 ~2002
1402407731280481546310 ~2002
1402414199280482839910 ~2002
14024346672243895467311 ~2005
1402459199280491839910 ~2002
1402459991280491998310 ~2002
1402539683280507936710 ~2002
1402619243280523848710 ~2002
1402621631280524326310 ~2002
1402635023280527004710 ~2002
1402672811280534562310 ~2002
1402726511280545302310 ~2002
1402758251280551650310 ~2002
1402789859280557971910 ~2002
14028136193366752685711 ~2005
14028176871122254149711 ~2004
Exponent Prime Factor Digits Year
1402824323280564864710 ~2002
1402868039280573607910 ~2002
1402868123280573624710 ~2002
1402877951280575590310 ~2002
1402902443280580488710 ~2002
1403157839280631567910 ~2002
1403171459280634291910 ~2002
14032046293087050183911 ~2005
1403208791280641758310 ~2002
1403209499280641899910 ~2002
1403221751280644350310 ~2002
1403222699280644539910 ~2002
1403290403280658080710 ~2002
14033236312525982535911 ~2005
14033839635894212644711 ~2006
14035069671122805573711 ~2004
1403521211280704242310 ~2002
1403561501842136900710 ~2004
1403684833842210899910 ~2004
1403686103280737220710 ~2002
1403686703280737340710 ~2002
1403800523280760104710 ~2002
14039187072527053672711 ~2005
1403996651280799330310 ~2002
1404029617842417770310 ~2004
Exponent Prime Factor Digits Year
1404036659280807331910 ~2002
1404060023280812004710 ~2002
1404102611280820522310 ~2002
1404104651280820930310 ~2002
1404125771280825154310 ~2002
1404193691280838738310 ~2002
1404234659280846931910 ~2002
14042583891123406711311 ~2004
1404314423280862884710 ~2002
1404345023280869004710 ~2002
1404427301842656380710 ~2004
1404453241842671944710 ~2004
1404476603280895320710 ~2002
14044992791404499279111 ~2004
1404522191280904438310 ~2002
14046473394494871484911 ~2005
1404717971280943594310 ~2002
1404729863280945972710 ~2002
1404745763280949152710 ~2002
1404756701842854020710 ~2004
14047949691123835975311 ~2004
14048503316743281588911 ~2006
1404875183280975036710 ~2002
1404914723280982944710 ~2002
1404973931280994786310 ~2002
Exponent Prime Factor Digits Year
1404980831280996166310 ~2002
14050044672529008040711 ~2005
1405014239281002847910 ~2002
14050435933091095904711 ~2005
1405073459281014691910 ~2002
1405083059281016611910 ~2002
1405104203281020840710 ~2002
1405124939281024987910 ~2002
1405185191281037038310 ~2002
1405219391281043878310 ~2002
1405258859281051771910 ~2002
1405308851281061770310 ~2002
1405332479281066495910 ~2002
1405346711281069342310 ~2002
1405365023281073004710 ~2002
1405370651281074130310 ~2002
14053772931967528210311 ~2005
1405404083281080816710 ~2002
1405457411281091482310 ~2002
1405509659281101931910 ~2002
1405532483281106496710 ~2002
1405617971281123594310 ~2002
14056597911124527832911 ~2004
1405660331281132066310 ~2002
1405686311281137262310 ~2002
Home
4.768.925 digits
e-mail
25-05-04