Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1304039603260807920710 ~2002
1304074571260814914310 ~2002
1304123519260824703910 ~2002
1304147723260829544710 ~2002
1304171591260834318310 ~2002
1304264761782558856710 ~2003
1304268323260853664710 ~2002
1304351351260870270310 ~2002
1304359499260871899910 ~2002
1304360171260872034310 ~2002
1304373817782624290310 ~2003
13044092471304409247111 ~2004
1304448179260889635910 ~2002
13044568631304456863111 ~2004
1304539499260907899910 ~2002
1304546891260909378310 ~2002
1304584271260916854310 ~2002
1304608057782764834310 ~2003
1304654303260930860710 ~2002
1304743613782846167910 ~2003
1304810063260962012710 ~2002
1304838611260967722310 ~2002
1304846243260969248710 ~2002
1304883857782930314310 ~2003
13049160472348848884711 ~2005
Exponent Prime Factor Digits Year
13049608737046788714311 ~2006
1304973083260994616710 ~2002
1305105671261021134310 ~2002
1305128633783077179910 ~2003
1305157979261031595910 ~2002
1305161183261032236710 ~2002
1305169643261033928710 ~2002
1305210983261042196710 ~2002
1305243911261048782310 ~2002
1305332297783199378310 ~2003
1305345383261069076710 ~2002
1305370883261074176710 ~2002
1305383459261076691910 ~2002
1305492997783295798310 ~2003
1305506183261101236710 ~2002
1305530879261106175910 ~2002
1305757151261151430310 ~2002
13057587671305758767111 ~2004
13057697412872693430311 ~2005
1305844583261168916710 ~2002
13058593332089374932911 ~2004
1305869759261173951910 ~2002
1305911531261182306310 ~2002
1305920279261184055910 ~2002
13059352191044748175311 ~2004
Exponent Prime Factor Digits Year
1305949451261189890310 ~2002
1306035917783621550310 ~2003
1306065983261213196710 ~2002
1306181441783708864710 ~2003
130622407121944564392912 ~2007
13062586491045006919311 ~2004
1306288283261257656710 ~2002
1306363973783818383910 ~2003
1306397531261279506310 ~2002
1306453163261290632710 ~2002
1306498139261299627910 ~2002
1306608323261321664710 ~2002
1306611359261322271910 ~2002
1306631171261326234310 ~2002
13067469111045397528911 ~2004
13067729811045418384911 ~2004
1306782353784069411910 ~2003
1306800023261360004710 ~2002
1306827637784096582310 ~2003
1306842203261368440710 ~2002
1306884671261376934310 ~2002
1306892819261378563910 ~2002
1306910399261382079910 ~2002
1306934977784160986310 ~2003
13070005371045600429711 ~2004
Exponent Prime Factor Digits Year
1307025311261405062310 ~2002
1307042531261408506310 ~2002
1307055941784233564710 ~2003
1307142899261428579910 ~2002
13071565611045725248911 ~2004
13071989892875837775911 ~2005
1307237003261447400710 ~2002
1307267651261453530310 ~2002
1307362319261472463910 ~2002
13073696211045895696911 ~2004
1307376401784425840710 ~2003
13074049332091847892911 ~2004
1307441339261488267910 ~2002
1307501579261500315910 ~2002
1307532983261506596710 ~2002
1307633303261526660710 ~2002
1307680091261536018310 ~2002
13076868111046149448911 ~2004
1307690999261538199910 ~2002
13077038831307703883111 ~2004
1307739001784643400710 ~2003
1307773151261554630310 ~2002
13077885911307788591111 ~2004
1307835251261567050310 ~2002
1307910959261582191910 ~2002
Home
4.768.925 digits
e-mail
25-05-04