Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1300773431260154686310 ~2002
1300787783260157556710 ~2002
1300812203260162440710 ~2002
1300822277780493366310 ~2003
1300840511260168102310 ~2002
1300843403260168680710 ~2002
1300865651260173130310 ~2002
1300881061780528636710 ~2003
1300927343260185468710 ~2002
1300932323260186464710 ~2002
130093698112488995017712 ~2006
13009435371040754829711 ~2004
1300980731260196146310 ~2002
1301010041780606024710 ~2003
1301031191260206238310 ~2002
1301031911260206382310 ~2002
1301174723260234944710 ~2002
1301249051260249810310 ~2002
1301250239260250047910 ~2002
1301266919260253383910 ~2002
1301363363260272672710 ~2002
13013736591041098927311 ~2004
1301410031260282006310 ~2002
13014214371041137149711 ~2004
13014426071301442607111 ~2004
Exponent Prime Factor Digits Year
130144813119001142712712 ~2007
1301456543260291308710 ~2002
1301492603260298520710 ~2002
1301528303260305660710 ~2002
13015944791301594479111 ~2004
1301594951260318990310 ~2002
13016017311041281384911 ~2004
1301610923260322184710 ~2002
1301653499260330699910 ~2002
13016643791301664379111 ~2004
13016822712082691633711 ~2004
1301695259260339051910 ~2002
1301789459260357891910 ~2002
1301823701781094220710 ~2003
1301826371260365274310 ~2002
1301862323260372464710 ~2002
1301954413781172647910 ~2003
1301973059260394611910 ~2002
1302022097781213258310 ~2003
1302071651260414330310 ~2002
1302083543260416708710 ~2002
1302165071260433014310 ~2002
1302212819260442563910 ~2002
1302262319260452463910 ~2002
1302273503260454700710 ~2002
Exponent Prime Factor Digits Year
1302303851260460770310 ~2002
1302303923260460784710 ~2002
1302421717781453030310 ~2003
1302426263260485252710 ~2002
1302452279260490455910 ~2002
1302479603260495920710 ~2002
1302494411260498882310 ~2002
1302530711260506142310 ~2002
1302543491260508698310 ~2002
1302546911260509382310 ~2002
1302549263260509852710 ~2002
13025723472084115755311 ~2004
13025769833386700155911 ~2005
13026141111042091288911 ~2004
1302638231260527646310 ~2002
1302654959260530991910 ~2002
1302698543260539708710 ~2002
13027198011042175840911 ~2004
13027226231302722623111 ~2004
1302733871260546774310 ~2002
1302752201781651320710 ~2003
1302940139260588027910 ~2002
13029590033387693407911 ~2005
130296100314853755434312 ~2006
13031007896254883787311 ~2006
Exponent Prime Factor Digits Year
1303130063260626012710 ~2002
13031427612866914074311 ~2005
1303160591260632118310 ~2002
1303172993781903795910 ~2003
1303198199260639639910 ~2002
1303236917781942150310 ~2003
1303300139260660027910 ~2002
1303348451260669690310 ~2002
1303350563260670112710 ~2002
1303373759260674751910 ~2002
1303388171260677634310 ~2002
13034360512346184891911 ~2005
13035272233128465335311 ~2005
1303574221782144532710 ~2003
1303578719260715743910 ~2002
1303686119260737223910 ~2002
1303735259260747051910 ~2002
1303754351260750870310 ~2002
1303770421782262252710 ~2003
1303821611260764322310 ~2002
1303825973782295583910 ~2003
13038993531825459094311 ~2004
1303924703260784940710 ~2002
1303976879260795375910 ~2002
1303998791260799758310 ~2002
Home
4.768.925 digits
e-mail
25-05-04