Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1094898971218979794310 ~2002
1094905277656943166310 ~2003
1094946299218989259910 ~2002
1094961473656976883910 ~2003
10949743033722912630311 ~2005
10950407998103301912711 ~2005
10950450595256216283311 ~2005
1095069953657041971910 ~2003
1095088979219017795910 ~2002
1095102383219020476710 ~2002
1095120419219024083910 ~2002
1095148643219029728710 ~2002
10951609092409353999911 ~2004
1095161219219032243910 ~2002
1095164891876131912910 ~2003
1095289271219057854310 ~2002
1095298931219059786310 ~2002
1095313091219062618310 ~2002
1095325163219065032710 ~2002
1095374699219074939910 ~2002
1095402793657241675910 ~2003
1095455951219091190310 ~2002
1095470639219094127910 ~2002
1095556271219111254310 ~2002
1095556499219111299910 ~2002
Exponent Prime Factor Digits Year
1095602219219120443910 ~2002
1095604199219120839910 ~2002
1095618059219123611910 ~2002
10956253511972125631911 ~2004
1095634679219126935910 ~2002
1095634763219126952710 ~2002
10956649031753063844911 ~2004
1095695879219139175910 ~2002
1095782819219156563910 ~2002
10958840892630121813711 ~2004
1095915323219183064710 ~2002
1095929099219185819910 ~2002
1095935273657561163910 ~2003
10959565932411104504711 ~2004
10960339634603342644711 ~2005
1096048643219209728710 ~2002
1096127243219225448710 ~2002
10961890631096189063111 ~2003
1096275683219255136710 ~2002
10962848091534798732711 ~2004
1096314179219262835910 ~2002
1096323737877058989710 ~2003
1096349591219269918310 ~2002
1096357103219271420710 ~2002
1096368551219273710310 ~2002
Exponent Prime Factor Digits Year
1096369811219273962310 ~2002
1096409063219281812710 ~2002
10964161433508531657711 ~2005
1096449773657869863910 ~2003
1096462751219292550310 ~2002
1096464443219292888710 ~2002
1096484099219296819910 ~2002
10965211331754433812911 ~2004
1096529279219305855910 ~2002
1096541051219308210310 ~2002
1096571279219314255910 ~2002
1096712759219342551910 ~2002
1096759451219351890310 ~2002
1096792379219358475910 ~2002
1096799663219359932710 ~2002
10968216671754914667311 ~2004
1096912259219382451910 ~2002
1096942859219388571910 ~2002
1096948571219389714310 ~2002
1096951319219390263910 ~2002
1096973677658184206310 ~2003
1096985399219397079910 ~2002
1097016779219403355910 ~2002
1097046563219409312710 ~2002
1097083357658250014310 ~2003
Exponent Prime Factor Digits Year
1097124443219424888710 ~2002
1097130539219426107910 ~2002
1097158919877727135310 ~2003
1097162351219432470310 ~2002
1097162873658297723910 ~2003
1097202539219440507910 ~2002
10972079831097207983111 ~2003
1097227871219445574310 ~2002
10973107013511394243311 ~2005
1097336711219467342310 ~2002
1097394899219478979910 ~2002
1097411723219482344710 ~2002
1097414471219482894310 ~2002
1097420879877936703310 ~2003
1097488739219497747910 ~2002
1097492351219498470310 ~2002
1097508551219501710310 ~2002
1097568961658541376710 ~2003
1097569007878055205710 ~2003
10975949471975670904711 ~2004
1097673581658604148710 ~2003
1097718911219543782310 ~2002
1097780483219556096710 ~2002
1097784659219556931910 ~2002
1097829301658697580710 ~2003
Home
4.768.925 digits
e-mail
25-05-04