Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1097841323219568264710 ~2002
1097845043219569008710 ~2002
1097877433658726459910 ~2003
1097878337658727002310 ~2003
1097884451219576890310 ~2002
1097886719219577343910 ~2002
1097977799219595559910 ~2002
1097996597658797958310 ~2003
1098019943219603988710 ~2002
10980894131756943060911 ~2004
1098100379219620075910 ~2002
10981061871976591136711 ~2004
1098109283219621856710 ~2002
1098129083219625816710 ~2002
1098138719219627743910 ~2002
10981473416808513514311 ~2005
1098178799219635759910 ~2002
10981848311757095729711 ~2004
1098223073658933843910 ~2003
1098272723219654544710 ~2002
10983305213294991563111 ~2004
1098332159219666431910 ~2002
1098343439878674751310 ~2003
1098346919219669383910 ~2002
1098372217659023330310 ~2003
Exponent Prime Factor Digits Year
1098401483219680296710 ~2002
1098477119219695423910 ~2002
1098499403219699880710 ~2002
1098511103219702220710 ~2002
1098532619219706523910 ~2002
1098533603219706720710 ~2002
10985389571757662331311 ~2004
1098572339219714467910 ~2002
1098605663219721132710 ~2002
1098638041659182824710 ~2003
1098716219219743243910 ~2002
1098736091219747218310 ~2002
1098745801659247480710 ~2003
1098765443219753088710 ~2002
1098797977659278786310 ~2003
1098823259219764651910 ~2002
1098875549879100439310 ~2003
1098883679219776735910 ~2002
1098887291219777458310 ~2002
1098900497659340298310 ~2003
1098932557659359534310 ~2003
1098950123219790024710 ~2002
1098962531219792506310 ~2002
1098968291219793658310 ~2002
1099016339219803267910 ~2002
Exponent Prime Factor Digits Year
1099048319219809663910 ~2002
1099071419219814283910 ~2002
1099093217659455930310 ~2003
1099110563219822112710 ~2002
1099112159219822431910 ~2002
1099161263219832252710 ~2002
1099194611219838922310 ~2002
1099264031219852806310 ~2002
1099267679219853535910 ~2002
1099267751219853550310 ~2002
1099338887879471109710 ~2003
1099382939219876587910 ~2002
1099385159219877031910 ~2002
1099410479219882095910 ~2002
10994112071099411207111 ~2003
1099428839219885767910 ~2002
1099442213659665327910 ~2003
1099513799219902759910 ~2002
1099532729879626183310 ~2003
1099545563219909112710 ~2002
1099587299219917459910 ~2002
1099593629879674903310 ~2003
1099654499219930899910 ~2002
1099656253659793751910 ~2003
1099703219219940643910 ~2002
Exponent Prime Factor Digits Year
1099731551219946310310 ~2002
1099755599219951119910 ~2002
1099847579219969515910 ~2002
1099851671219970334310 ~2002
1099880317659928190310 ~2003
1099960973659976583910 ~2003
1099989503219997900710 ~2002
1100044031220008806310 ~2002
1100060771220012154310 ~2002
1100069843220013968710 ~2002
1100094251220018850310 ~2002
1100099219220019843910 ~2002
1100174819220034963910 ~2002
1100346491220069298310 ~2002
11003545571760567291311 ~2004
1100361323220072264710 ~2002
1100413837660248302310 ~2003
1100463179220092635910 ~2002
1100521601660312960710 ~2003
1100566679220113335910 ~2002
1100593573660356143910 ~2003
1100608501660365100710 ~2003
1100635093660381055910 ~2003
1100650871220130174310 ~2002
1100652023220130404710 ~2002
Home
4.768.925 digits
e-mail
25-05-04