Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1009422143201884428710 ~2001
100942444716958330709712 ~2006
10094277531413198854311 ~2003
1009446923201889384710 ~2001
1009448039201889607910 ~2001
1009450081605670048710 ~2002
1009476599201895319910 ~2001
1009490297605694178310 ~2002
1009502933605701759910 ~2002
1009505771201901154310 ~2001
100950842927458629268912 ~2007
1009514939201902987910 ~2001
1009538639201907727910 ~2001
1009553339201910667910 ~2001
1009554659201910931910 ~2001
1009587673605752603910 ~2002
1009594199201918839910 ~2001
100961905311307733393712 ~2006
1009622813605773687910 ~2002
1009663103201932620710 ~2001
10096667294038666916111 ~2005
1009711343201942268710 ~2001
1009715543201943108710 ~2001
1009737671201947534310 ~2001
1009738637605843182310 ~2002
Exponent Prime Factor Digits Year
10097455333029236599111 ~2004
1009753919201950783910 ~2001
1009768583201953716710 ~2001
1009776011201955202310 ~2001
1009787843201957568710 ~2001
1009837201605902320710 ~2002
10098502991817730538311 ~2004
10098588972423661352911 ~2004
1009866491201973298310 ~2001
1009907813605944687910 ~2002
1009918391201983678310 ~2001
10099516933029855079111 ~2004
1009953803201990760710 ~2001
1009977203201995440710 ~2001
1010008871202001774310 ~2001
10100178492222039267911 ~2004
1010020153606012091910 ~2002
1010065597606039358310 ~2002
1010102231202020446310 ~2001
1010174003202034800710 ~2001
1010196371202039274310 ~2001
1010227979202045595910 ~2001
1010252447808201957710 ~2003
1010260259202052051910 ~2001
1010281991202056398310 ~2001
Exponent Prime Factor Digits Year
1010298923202059784710 ~2001
1010313911202062782310 ~2001
1010337071202067414310 ~2001
1010354473606212683910 ~2002
1010369351202073870310 ~2001
1010383739202076747910 ~2001
1010388443202077688710 ~2001
1010399543202079908710 ~2001
101041078340618513476712 ~2007
10104353111616696497711 ~2004
10104715871010471587111 ~2003
1010492963202098592710 ~2001
1010535419202107083910 ~2001
1010584343202116868710 ~2001
10105846811616935489711 ~2004
1010649179202129835910 ~2001
1010681723202136344710 ~2001
1010708453606425071910 ~2002
1010742839202148567910 ~2001
1010771053606462631910 ~2002
1010804603202160920710 ~2001
10108475993234712316911 ~2004
10109328011617492481711 ~2004
1010935357606561214310 ~2002
1010962031202192406310 ~2001
Exponent Prime Factor Digits Year
1010964197808771357710 ~2003
1011024997606614998310 ~2002
1011072383202214476710 ~2001
1011092363202218472710 ~2001
1011117323202223464710 ~2001
1011285059202257011910 ~2001
1011298117606778870310 ~2002
1011301943202260388710 ~2001
1011304139202260827910 ~2001
1011321131202264226310 ~2001
1011420983202284196710 ~2001
10114430117282389679311 ~2005
1011453263202290652710 ~2001
1011470483202294096710 ~2001
1011479519202295903910 ~2001
1011488099202297619910 ~2001
1011514643202302928710 ~2001
1011533051202306610310 ~2001
1011548519202309703910 ~2001
1011559319202311863910 ~2001
1011591671202318334310 ~2001
1011606191202321238310 ~2001
1011609301606965580710 ~2002
1011651383202330276710 ~2001
1011696599202339319910 ~2001
Home
4.724.182 digits
e-mail
25-04-13