Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1065925103213185020710 ~2001
1065942257639565354310 ~2003
1065946991213189398310 ~2001
1065956519852765215310 ~2003
1066038383213207676710 ~2001
1066047491213209498310 ~2001
10660615871066061587111 ~2003
1066092121639655272710 ~2003
1066098479213219695910 ~2001
1066098689852878951310 ~2003
1066107359213221471910 ~2001
1066144259213228851910 ~2001
1066240523213248104710 ~2001
1066244183213248836710 ~2001
1066288703213257740710 ~2001
1066301231213260246310 ~2001
1066342379213268475910 ~2001
1066345139213269027910 ~2001
1066446239213289247910 ~2001
10664478911066447891111 ~2003
1066490003213298000710 ~2001
1066527481639916488710 ~2003
1066578599213315719910 ~2001
1066602731213320546310 ~2001
1066656131213331226310 ~2001
Exponent Prime Factor Digits Year
1066670399213334079910 ~2001
1066779017853423213710 ~2003
10668031135760736810311 ~2005
1066812479213362495910 ~2001
1066822331213364466310 ~2001
1066828211213365642310 ~2001
1066880099213376019910 ~2001
1066893959213378791910 ~2001
1066914257640148554310 ~2003
1066942379213388475910 ~2001
1067044477640226686310 ~2003
1067082491213416498310 ~2001
1067099221640259532710 ~2003
1067117879213423575910 ~2002
1067125517640275310310 ~2003
1067136743213427348710 ~2002
10671441311067144131111 ~2003
1067168423213433684710 ~2002
1067171101640302660710 ~2003
1067205479213441095910 ~2002
1067208251213441650310 ~2002
1067289323213457864710 ~2002
1067294183213458836710 ~2002
1067339963213467992710 ~2002
1067379899213475979910 ~2002
Exponent Prime Factor Digits Year
10673909834483042128711 ~2005
1067393489853914791310 ~2003
1067417639213483527910 ~2002
1067427437640456462310 ~2003
1067453741640472244710 ~2003
1067481143213496228710 ~2002
1067495963213499192710 ~2002
1067500163213500032710 ~2002
1067515511213503102310 ~2002
1067557103213511420710 ~2002
1067572501640543500710 ~2003
1067585111213517022310 ~2002
1067607071213521414310 ~2002
1067636327854109061710 ~2003
1067688203213537640710 ~2002
1067697539213539507910 ~2002
10678447092349258359911 ~2004
1067848091213569618310 ~2002
1067849231213569846310 ~2002
1067887921640732752710 ~2003
1067938103213587620710 ~2002
1067985263213597052710 ~2002
1068040703213608140710 ~2002
1068056303213611260710 ~2002
1068066683213613336710 ~2002
Exponent Prime Factor Digits Year
1068114143213622828710 ~2002
1068170819213634163910 ~2002
1068187871213637574310 ~2002
1068239351213647870310 ~2002
1068243083213648616710 ~2002
10682440131495541618311 ~2004
1068252071213650414310 ~2002
1068268163213653632710 ~2002
1068277043213655408710 ~2002
1068310337854648269710 ~2003
1068324479213664895910 ~2002
1068367277854693821710 ~2003
1068394319213678863910 ~2002
1068403261641041956710 ~2003
1068444241641066544710 ~2003
10684677531495854854311 ~2004
106847149921583124279912 ~2006
10684827174060234324711 ~2005
1068484211213696842310 ~2002
1068513779213702755910 ~2002
1068572579213714515910 ~2002
1068648803213729760710 ~2002
1068733691213746738310 ~2002
1068754943213750988710 ~2002
1068825517641295310310 ~2003
Home
4.768.925 digits
e-mail
25-05-04