Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1068836711213767342310 ~2002
1068847037641308222310 ~2003
1068864493641318695910 ~2003
1068868441641321064710 ~2003
1068939383213787876710 ~2002
10689560471710329675311 ~2004
1068967583213793516710 ~2002
1068999779213799955910 ~2002
1069036141641421684710 ~2003
1069041971213808394310 ~2002
1069119461855295568910 ~2003
1069130099213826019910 ~2002
1069155611213831122310 ~2002
1069165679213833135910 ~2002
1069224371855379496910 ~2003
1069259759213851951910 ~2002
1069319759213863951910 ~2002
1069335983213867196710 ~2002
1069344323213868864710 ~2002
1069351163213870232710 ~2002
1069376039855500831310 ~2003
1069377983213875596710 ~2002
1069413503213882700710 ~2002
1069414883213882976710 ~2002
1069469393641681635910 ~2003
Exponent Prime Factor Digits Year
10695049373208514811111 ~2004
1069566119213913223910 ~2002
1069579271213915854310 ~2002
1069581203213916240710 ~2002
1069595711213919142310 ~2002
1069638203213927640710 ~2002
1069647791213929558310 ~2002
1069705037855764029710 ~2003
1069709171213941834310 ~2002
1069759199213951839910 ~2002
1069813691213962738310 ~2002
1069831991213966398310 ~2002
1069871843213974368710 ~2002
10698857111069885711111 ~2003
1069891703213978340710 ~2002
1069986803213997360710 ~2002
10700008072568001936911 ~2004
1070007637642004582310 ~2003
1070019959214003991910 ~2002
10700436133210130839111 ~2004
1070057363214011472710 ~2002
1070059031214011806310 ~2002
1070068913642041347910 ~2003
1070083799214016759910 ~2002
1070104433642062659910 ~2003
Exponent Prime Factor Digits Year
1070105903214021180710 ~2002
10701387173210416151111 ~2004
1070140271214028054310 ~2002
1070171363214034272710 ~2002
1070177651214035530310 ~2002
1070182583214036516710 ~2002
1070205413642123247910 ~2003
1070209271214041854310 ~2002
1070233403214046680710 ~2002
1070265023214053004710 ~2002
1070298457642179074310 ~2003
107030287927613814278312 ~2007
1070371259214074251910 ~2002
1070378051214075610310 ~2002
10703874431070387443111 ~2003
1070420473642252283910 ~2003
1070446271214089254310 ~2002
1070446451214089290310 ~2002
1070457551214091510310 ~2002
1070468411214093682310 ~2002
1070476619214095323910 ~2002
10704800872569152208911 ~2004
1070507831214101566310 ~2002
1070528581642317148710 ~2003
1070575199214115039910 ~2002
Exponent Prime Factor Digits Year
1070613779214122755910 ~2002
1070651363214130272710 ~2002
1070651651214130330310 ~2002
1070658503214131700710 ~2002
10706709591927207726311 ~2004
1070683597642410158310 ~2003
1070733971214146794310 ~2002
1070778011214155602310 ~2002
1070779691214155938310 ~2002
1070788753642473251910 ~2003
1070794379214158875910 ~2002
1070820623214164124710 ~2002
1070833019214166603910 ~2002
1070948363214189672710 ~2002
1071025019856820015310 ~2003
1071046103214209220710 ~2002
1071062123214212424710 ~2002
1071095783214219156710 ~2002
1071137183214227436710 ~2002
1071182771214236554310 ~2002
1071251003214250200710 ~2002
1071284579214256915910 ~2002
1071295139214259027910 ~2002
1071301079214260215910 ~2002
1071383051857106440910 ~2003
Home
4.768.925 digits
e-mail
25-05-04