Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1063469531212693906310 ~2001
1063493831212698766310 ~2001
1063498883212699776710 ~2001
10635289437019291023911 ~2005
10635412432765207231911 ~2004
1063602863212720572710 ~2001
1063603301850882640910 ~2003
1063624871212724974310 ~2001
1063637639212727527910 ~2001
1063658699212731739910 ~2001
10637705771702032923311 ~2004
1063801331212760266310 ~2001
1063804583212760916710 ~2001
1063821313638292787910 ~2003
1063826903212765380710 ~2001
1063844053638306431910 ~2003
1063883591212776718310 ~2001
1063895639212779127910 ~2001
10639590671063959067111 ~2003
1063959503212791900710 ~2001
1064008391212801678310 ~2001
1064032799851226239310 ~2003
1064071583212814316710 ~2001
1064088611212817722310 ~2001
1064091263212818252710 ~2001
Exponent Prime Factor Digits Year
1064127641851302112910 ~2003
1064134139212826827910 ~2001
1064179943212835988710 ~2001
1064206259212841251910 ~2001
1064229157638537494310 ~2003
1064233151212846630310 ~2001
1064269859212853971910 ~2001
1064278703212855740710 ~2001
1064290739212858147910 ~2001
10642927871064292787111 ~2003
1064306057851444845710 ~2003
10644076493406104476911 ~2004
1064434643212886928710 ~2001
1064442191212888438310 ~2001
1064458511212891702310 ~2001
1064470703212894140710 ~2001
1064485283212897056710 ~2001
1064486831212897366310 ~2001
1064486921851589536910 ~2003
1064498663212899732710 ~2001
1064500379212900075910 ~2001
1064533763212906752710 ~2001
1064537261638722356710 ~2003
1064539921638723952710 ~2003
10645758791064575879111 ~2003
Exponent Prime Factor Digits Year
10646693176813883628911 ~2005
1064732351212946470310 ~2001
1064742551212948510310 ~2001
10647516293407205212911 ~2004
1064754857638852914310 ~2003
1064756051212951210310 ~2001
1064758811212951762310 ~2001
1064782331212956466310 ~2001
1064860613638916367910 ~2003
1064901899212980379910 ~2001
1064904083212980816710 ~2001
1064944213638966527910 ~2003
1064955851212991170310 ~2001
1064960423212992084710 ~2001
1064968187851974549710 ~2003
1064972039212994407910 ~2001
1064976719212995343910 ~2001
1064985599212997119910 ~2001
1064997337638998402310 ~2003
1064998283212999656710 ~2001
1065016583213003316710 ~2001
1065032723213006544710 ~2001
1065051917639031150310 ~2003
1065064751213012950310 ~2001
1065083933639050359910 ~2003
Exponent Prime Factor Digits Year
1065107257639064354310 ~2003
1065153371213030674310 ~2001
1065169223213033844710 ~2001
1065197411213039482310 ~2001
1065358523213071704710 ~2001
1065361631213072326310 ~2001
1065365711213073142310 ~2001
1065451031213090206310 ~2001
1065475679213095135910 ~2001
1065557963213111592710 ~2001
1065564323213112864710 ~2001
1065600839213120167910 ~2001
1065631559213126311910 ~2001
1065654743213130948710 ~2001
1065660083213132016710 ~2001
1065686663213137332710 ~2001
1065741077852592861710 ~2003
10657722492344698947911 ~2004
1065785291213157058310 ~2001
10657872431065787243111 ~2003
1065822503213164500710 ~2001
1065871283213174256710 ~2001
1065874079213174815910 ~2001
1065885361639531216710 ~2003
1065910379213182075910 ~2001
Home
4.768.925 digits
e-mail
25-05-04