Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1050402623210080524710 ~2001
1050402959210080591910 ~2001
1050416039210083207910 ~2001
1050527183210105436710 ~2001
1050536423210107284710 ~2001
1050549371210109874310 ~2001
10505734874202293948111 ~2005
1050575219840460175310 ~2003
1050600737630360442310 ~2003
10506314091470883972711 ~2004
1050654491210130898310 ~2001
1050655439210131087910 ~2001
10506999171470979883911 ~2004
1050703943210140788710 ~2001
10508110391050811039111 ~2003
1050812579210162515910 ~2001
1050814991210162998310 ~2001
1050824699210164939910 ~2001
1050836321840669056910 ~2003
1050845903210169180710 ~2001
1050861971840689576910 ~2003
1050902903210180580710 ~2001
1050966803210193360710 ~2001
1050978191210195638310 ~2001
1051048343210209668710 ~2001
Exponent Prime Factor Digits Year
1051060883210212176710 ~2001
10510781834414528368711 ~2005
1051085939210217187910 ~2001
1051095959210219191910 ~2001
1051158341840926672910 ~2003
1051173731210234746310 ~2001
105118667318500885444912 ~2006
1051294859210258971910 ~2001
1051309211210261842310 ~2001
1051320659210264131910 ~2001
1051343261630805956710 ~2003
1051375511210275102310 ~2001
10513897391051389739111 ~2003
1051464983210292996710 ~2001
1051467899210293579910 ~2001
1051502663210300532710 ~2001
1051503419210300683910 ~2001
1051523939210304787910 ~2001
1051548203210309640710 ~2001
1051557599210311519910 ~2001
1051602533630961519910 ~2003
1051699151210339830310 ~2001
1051701263210340252710 ~2001
1051738931210347786310 ~2001
1051784759210356951910 ~2001
Exponent Prime Factor Digits Year
1051785401631071240710 ~2003
1051795883210359176710 ~2001
1051806839210361367910 ~2001
1051835087841468069710 ~2003
1051837883210367576710 ~2001
1051852079210370415910 ~2001
10518942193576440344711 ~2004
1051911743210382348710 ~2001
1051917131210383426310 ~2001
1051934113631160467910 ~2003
1051964861841571888910 ~2003
1051966199210393239910 ~2001
1051978667841582933710 ~2003
10519801031051980103111 ~2003
1051993223210398644710 ~2001
1052011393631206835910 ~2003
1052163023210432604710 ~2001
1052189111210437822310 ~2001
1052198639210439727910 ~2001
1052226971210445394310 ~2001
10522390375050747377711 ~2005
1052249117631349470310 ~2003
1052258183210451636710 ~2001
1052261123210452224710 ~2001
1052277311210455462310 ~2001
Exponent Prime Factor Digits Year
1052353139841882511310 ~2003
1052369189841895351310 ~2003
1052369497631421698310 ~2003
1052370503210474100710 ~2001
10523752991894275538311 ~2004
1052408519841926815310 ~2003
10524349211683895873711 ~2004
1052450051210490010310 ~2001
1052499557631499734310 ~2003
1052559251210511850310 ~2001
1052610623210522124710 ~2001
1052618377631571026310 ~2003
1052641571210528314310 ~2001
10526459832526350359311 ~2004
1052681639210536327910 ~2001
1052682461631609476710 ~2003
1052781419210556283910 ~2001
1052783801631670280710 ~2003
10527868511895016331911 ~2004
1052804471210560894310 ~2001
1052862059210572411910 ~2001
1052878163210575632710 ~2001
1052918423210583684710 ~2001
1052931419210586283910 ~2001
1052954879210590975910 ~2001
Home
4.768.925 digits
e-mail
25-05-04