Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
10365719716012117431911 ~2005
10365904631658544740911 ~2004
1036671491207334298310 ~2001
1036702091207340418310 ~2001
1036707781622024668710 ~2003
1036721461622032876710 ~2003
1036726037622035622310 ~2003
1036908371207381674310 ~2001
1036910621622146372710 ~2003
1036915079207383015910 ~2001
1036933883207386776710 ~2001
1036942619207388523910 ~2001
1036953383207390676710 ~2001
1036964723207392944710 ~2001
1036966583207393316710 ~2001
1037063627829650901710 ~2003
1037067959207413591910 ~2001
1037074631207414926310 ~2001
1037094791207418958310 ~2001
1037121277622272766310 ~2003
1037153291207430658310 ~2001
1037160479207432095910 ~2001
1037224379207444875910 ~2001
1037225243207445048710 ~2001
1037238011207447602310 ~2001
Exponent Prime Factor Digits Year
1037256431207451286310 ~2001
1037265791207453158310 ~2001
1037317091207463418310 ~2001
1037324557622394734310 ~2003
1037403959207480791910 ~2001
1037513957830011165710 ~2003
10375340515810190685711 ~2005
10375687991037568799111 ~2003
1037572801622543680710 ~2003
1037601479207520295910 ~2001
1037615617622569370310 ~2003
1037619911207523982310 ~2001
1037635199207527039910 ~2001
1037661431207532286310 ~2001
1037666243207533248710 ~2001
1037743229830194583310 ~2003
1037752043207550408710 ~2001
1037805971207561194310 ~2001
1037812799207562559910 ~2001
1037840663207568132710 ~2001
10378470794981665979311 ~2005
1037851937830281549710 ~2003
103787856135495446786312 ~2007
10379365871660698539311 ~2004
1037991659207598331910 ~2001
Exponent Prime Factor Digits Year
1038038777622823266310 ~2003
1038041099207608219910 ~2001
1038041219207608243910 ~2001
1038045251207609050310 ~2001
10380568792491336509711 ~2004
1038092999207618599910 ~2001
1038123431207624686310 ~2001
1038125161622875096710 ~2003
1038126671830501336910 ~2003
1038143699207628739910 ~2001
1038211151207642230310 ~2001
1038237983207647596710 ~2001
1038254303207650860710 ~2001
1038292499207658499910 ~2001
10384082537476539421711 ~2005
1038476111207695222310 ~2001
1038488603207697720710 ~2001
1038496463207699292710 ~2001
1038525011207705002310 ~2001
1038614723207722944710 ~2001
1038675311207735062310 ~2001
1038699659207739931910 ~2001
1038715943207743188710 ~2001
1038716999207743399910 ~2001
10387220116855565272711 ~2005
Exponent Prime Factor Digits Year
1038741659207748331910 ~2001
1038750143207750028710 ~2001
1038767111831013688910 ~2003
1038772079207754415910 ~2001
1038823441623294064710 ~2003
1038842351207768470310 ~2001
1038898391207779678310 ~2001
1038905711207781142310 ~2001
1038923423207784684710 ~2001
1038924479207784895910 ~2001
1038930551207786110310 ~2001
1038940403207788080710 ~2001
1038962651207792530310 ~2001
1039028411207805682310 ~2001
1039043543207808708710 ~2001
10391043471870387824711 ~2004
1039166603207833320710 ~2001
1039170131207834026310 ~2001
1039225541831380432910 ~2003
1039229561623537736710 ~2003
1039263503207852700710 ~2001
1039268017623560810310 ~2003
10393076091455030652711 ~2003
1039379441623627664710 ~2003
1039384799207876959910 ~2001
Home
4.768.925 digits
e-mail
25-05-04