Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1033917707827134165710 ~2003
1033938023206787604710 ~2001
1033939139206787827910 ~2001
1033970891206794178310 ~2001
1033981777620389066310 ~2003
1034006459827205167310 ~2003
1034080739206816147910 ~2001
1034082251206816450310 ~2001
1034107463206821492710 ~2001
1034132243206826448710 ~2001
1034135471206827094310 ~2001
1034137337620482402310 ~2003
1034176739206835347910 ~2001
1034207987827366389710 ~2003
1034217683206843536710 ~2001
1034232911206846582310 ~2001
1034235659206847131910 ~2001
1034281883206856376710 ~2001
103429729317169335063912 ~2006
10343063691448028916711 ~2003
1034312423206862484710 ~2001
1034445977620667586310 ~2003
1034481323206896264710 ~2001
1034518139206903627910 ~2001
1034518379206903675910 ~2001
Exponent Prime Factor Digits Year
1034584679206916935910 ~2001
1034636173620781703910 ~2003
1034685191206937038310 ~2001
1034697743206939548710 ~2001
1034705279206941055910 ~2001
1034730839206946167910 ~2001
10347403271034740327111 ~2003
1034754251206950850310 ~2001
10347640394346008963911 ~2005
1034814971206962994310 ~2001
1034882339206976467910 ~2001
1034900411206980082310 ~2001
1034942411206988482310 ~2001
10349656917451752975311 ~2005
1034986957620992174310 ~2003
1035070781621042468710 ~2003
1035095279828076223310 ~2003
1035123203207024640710 ~2001
1035141851207028370310 ~2001
10351560291449218440711 ~2003
1035202991207040598310 ~2001
10352557218074994623911 ~2005
1035274343207054868710 ~2001
1035278063207055612710 ~2001
1035285539207057107910 ~2001
Exponent Prime Factor Digits Year
1035298763207059752710 ~2001
1035305147828244117710 ~2003
1035314711207062942310 ~2001
1035318881621191328710 ~2003
1035320879207064175910 ~2001
1035327011207065402310 ~2001
1035328841828263072910 ~2003
1035361427828289141710 ~2003
1035407201621244320710 ~2003
10354122832484989479311 ~2004
1035438923207087784710 ~2001
1035440039207088007910 ~2001
1035454613621272767910 ~2003
1035523799207104759910 ~2001
1035527219207105443910 ~2001
1035647981621388788710 ~2003
1035676403207135280710 ~2001
10356824897249777423111 ~2005
1035747599207149519910 ~2001
1035768143207153628710 ~2001
1035792203207158440710 ~2001
1035813419207162683910 ~2001
1035818123207163624710 ~2001
10358274772485985944911 ~2004
1035869291207173858310 ~2001
Exponent Prime Factor Digits Year
10359129891450278184711 ~2003
1035927911207185582310 ~2001
1035940571207188114310 ~2001
1035981959207196391910 ~2001
1035994343207198868710 ~2001
1036055957621633574310 ~2003
1036059161828847328910 ~2003
1036095551207219110310 ~2001
1036153379207230675910 ~2001
10361775893937474838311 ~2005
1036189577621713746310 ~2003
1036210463207242092710 ~2001
1036227011207245402310 ~2001
1036311359207262271910 ~2001
1036333223207266644710 ~2001
10363868512694605812711 ~2004
1036407731207281546310 ~2001
10364230814145692324111 ~2005
1036440959207288191910 ~2001
1036446611207289322310 ~2001
1036447271207289454310 ~2001
1036479071207295814310 ~2001
1036488851207297770310 ~2001
1036489271207297854310 ~2001
1036516199207303239910 ~2001
Home
4.768.925 digits
e-mail
25-05-04