Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
530527883106105576710 ~1999
530531279424425023310 ~2001
530536757424429405710 ~2001
530540099106108019910 ~1999
530545199106109039910 ~1999
530565611955018099910 ~2001
530584991106116998310 ~1999
530601803106120360710 ~1999
530606651424485320910 ~2001
530621543106124308710 ~1999
5306308396898200907111 ~2004
5306367831273528279311 ~2002
530645543106129108710 ~1999
530655677742917947910 ~2001
530664371106132874310 ~1999
530670347424536277710 ~2001
530671811106134362310 ~1999
530673911106134782310 ~1999
530677859106135571910 ~1999
530681581318408948710 ~2000
530706791106141358310 ~1999
530745851106149170310 ~1999
530751839106150367910 ~1999
530755103106151020710 ~1999
530760053318456031910 ~2000
Exponent Prime Factor Digits Year
530762137318457282310 ~2000
530786519106157303910 ~1999
530808713743132198310 ~2001
530817257318490354310 ~2000
530821079106164215910 ~1999
530843227530843227110 ~2001
530849699106169939910 ~1999
530850863106170172710 ~1999
530854739106170947910 ~1999
530859551106171910310 ~1999
530861879106172375910 ~1999
530869919106173983910 ~1999
530870423106174084710 ~1999
530890043106178008710 ~1999
530893873318536323910 ~2000
530906633318543979910 ~2000
530911861318547116710 ~2000
530956043106191208710 ~1999
5309597396371516868111 ~2004
530976839106195367910 ~1999
5309808891592942667111 ~2002
5309896494247917192111 ~2003
530995589424796471310 ~2001
530996951424797560910 ~2001
5310141772017853872711 ~2002
Exponent Prime Factor Digits Year
531030587955855056710 ~2001
531068243106213648710 ~1999
531077411106215482310 ~1999
531078761318647256710 ~2000
531083093318649855910 ~2000
531100259106220051910 ~1999
531135433318681259910 ~2000
531145319106229063910 ~1999
531148199106229639910 ~1999
531151823106230364710 ~1999
531160739106232147910 ~1999
5311777011593533103111 ~2002
531182777318709666310 ~2000
531198203106239640710 ~1999
531202811106240562310 ~1999
531218351106243670310 ~1999
5312357592124943036111 ~2002
5312393814568658676711 ~2003
531250319106250063910 ~1999
531255911106251182310 ~1999
531271903531271903110 ~2001
531292199106258439910 ~1999
531295559106259111910 ~1999
531304097318782458310 ~2000
531306203106261240710 ~1999
Exponent Prime Factor Digits Year
531327431106265486310 ~1999
53133256121147035927912 ~2005
531334151106266830310 ~1999
531336863106267372710 ~1999
531356363106271272710 ~1999
531380461318828276710 ~2000
531382151106276430310 ~1999
531383999106276799910 ~1999
5314054672657027335111 ~2003
531419279106283855910 ~1999
5314290771275429784911 ~2002
531441359106288271910 ~1999
531443219106288643910 ~1999
531452723106290544710 ~1999
531458771106291754310 ~1999
531477539106295507910 ~1999
531484273318890563910 ~2000
531504047425203237710 ~2001
531516787850426859310 ~2001
531530171106306034310 ~1999
531531683106306336710 ~1999
5315810213295802330311 ~2003
531581399106316279910 ~1999
531586049425268839310 ~2001
531587033318952219910 ~2000
Home
5.307.017 digits
e-mail
26-01-11