Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
10393959115820617101711 ~2005
103941376121411923476712 ~2006
1039450199207890039910 ~2001
1039477739207895547910 ~2001
1039485191831588152910 ~2003
1039490519207898103910 ~2001
1039493879207898775910 ~2001
1039602023207920404710 ~2001
1039612163207922432710 ~2001
1039613459831690767310 ~2003
1039618451207923690310 ~2001
10396395431039639543111 ~2003
1039675961623805576710 ~2003
1039741037623844622310 ~2003
1039742351207948470310 ~2001
1039821059207964211910 ~2001
1039874711207974942310 ~2001
1039893623207978724710 ~2001
1039907279207981455910 ~2001
1039924211207984842310 ~2001
1039924631207984926310 ~2001
1039936151207987230310 ~2001
10399405571663904891311 ~2004
1039953371207990674310 ~2001
1039969481623981688710 ~2003
Exponent Prime Factor Digits Year
1039971143207994228710 ~2001
1039985797623991478310 ~2003
1039999223207999844710 ~2001
10400153092496036741711 ~2004
1040022419208004483910 ~2001
1040027281624016368710 ~2003
1040049119208009823910 ~2001
1040058203208011640710 ~2001
1040070719208014143910 ~2001
1040083721624050232710 ~2003
1040141051208028210310 ~2001
1040206883208041376710 ~2001
1040227619208045523910 ~2001
10402699871040269987111 ~2003
1040273483208054696710 ~2001
1040305439208061087910 ~2001
1040323241624193944710 ~2003
1040379443208075888710 ~2001
1040410223208082044710 ~2001
10404531311664725009711 ~2004
1040460803208092160710 ~2001
1040506451208101290310 ~2001
1040510147832408117710 ~2003
1040513423208102684710 ~2001
1040530691208106138310 ~2001
Exponent Prime Factor Digits Year
1040531111208106222310 ~2001
10405698372497367608911 ~2004
10405984015827351045711 ~2005
1040647981624388788710 ~2003
10406632931665061268911 ~2004
1040700673624420403910 ~2003
10407055915203527955111 ~2005
1040715719208143143910 ~2001
1040721497624432898310 ~2003
1040757023208151404710 ~2001
10407598971457063855911 ~2003
1040797643208159528710 ~2001
1040812931208162586310 ~2001
1040818277624490966310 ~2003
1040856779208171355910 ~2001
1040965223208193044710 ~2001
1041042731208208546310 ~2001
1041075551208215110310 ~2001
1041086219208217243910 ~2001
1041088703208217740710 ~2001
1041109841624665904710 ~2003
1041136391208227278310 ~2001
1041142691208228538310 ~2001
1041164077624698446310 ~2003
1041199751208239950310 ~2001
Exponent Prime Factor Digits Year
1041204971208240994310 ~2001
1041236639208247327910 ~2001
1041238739208247747910 ~2001
1041247463208249492710 ~2001
1041261251208252250310 ~2001
1041283403208256680710 ~2001
1041299279208259855910 ~2001
1041307691208261538310 ~2001
1041308783208261756710 ~2001
1041349031208269806310 ~2001
1041375431208275086310 ~2001
1041376331208275266310 ~2001
1041396491208279298310 ~2001
1041409139208281827910 ~2001
10414140012291110802311 ~2004
1041441671208288334310 ~2001
1041457271208291454310 ~2001
1041550799208310159910 ~2001
1041573191208314638310 ~2001
10415741091458203752711 ~2003
1041592319208318463910 ~2001
1041593437624956062310 ~2003
1041631163208326232710 ~2001
1041634393624980635910 ~2003
1041684491208336898310 ~2001
Home
4.768.925 digits
e-mail
25-05-04