Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
874685219699748175310 ~2002
874685621524811372710 ~2002
874694819174938963910 ~2001
874704569699763655310 ~2002
8747088192099301165711 ~2003
874727459174945491910 ~2001
8747530972624259291111 ~2004
874754759174950951910 ~2001
874758023174951604710 ~2001
874791059174958211910 ~2001
874791803174958360710 ~2001
874794059174958811910 ~2001
874845781524907468710 ~2002
8748618291224806560711 ~2003
874959083174991816710 ~2001
874973063174994612710 ~2001
875042123175008424710 ~2001
875057591175011518310 ~2001
875059631175011926310 ~2001
875077403175015480710 ~2001
875087159175017431910 ~2001
875090063175018012710 ~2001
875160599700128479310 ~2002
875200811175040162310 ~2001
87520411124680755930312 ~2006
Exponent Prime Factor Digits Year
875299031175059806310 ~2001
875304011175060802310 ~2001
875370059175074011910 ~2001
875407217525244330310 ~2002
875448419175089683910 ~2001
875461211175092242310 ~2001
875492399175098479910 ~2001
875550911175110182310 ~2001
875559803175111960710 ~2001
875560379175112075910 ~2001
875593931175118786310 ~2001
875603159175120631910 ~2001
875617331175123466310 ~2001
875623499175124699910 ~2001
875629211175125842310 ~2001
875639593525383755910 ~2002
875657099175131419910 ~2001
875665061525399036710 ~2002
875675351175135070310 ~2001
875675483175135096710 ~2001
875705821525423492710 ~2002
875706743175141348710 ~2001
875725997525435598310 ~2002
875771077525462646310 ~2002
875788883175157776710 ~2001
Exponent Prime Factor Digits Year
875821883175164376710 ~2001
875839511175167902310 ~2001
875853119175170623910 ~2001
875855339175171067910 ~2001
875879519175175903910 ~2001
875897531175179506310 ~2001
875916683175183336710 ~2001
875954357700763485710 ~2002
875966159175193231910 ~2001
875984783175196956710 ~2001
875997959175199591910 ~2001
876032657525619594310 ~2002
876041567700833253710 ~2002
876051023175210204710 ~2001
876058067700846453710 ~2002
876074579175214915910 ~2001
876083063175216612710 ~2001
876116779876116779110 ~2003
876131561525678936710 ~2002
8761327372628398211111 ~2004
876141743175228348710 ~2001
876164111175232822310 ~2001
8761978871401916619311 ~2003
876280763175256152710 ~2001
876316061701052848910 ~2002
Exponent Prime Factor Digits Year
87636932312794992115912 ~2005
876382103175276420710 ~2001
876391081525834648710 ~2002
8764226293505690516111 ~2004
8764347071402295531311 ~2003
876456353525873811910 ~2002
876480023175296004710 ~2001
8765090171402414427311 ~2003
876528269701222615310 ~2002
876574103175314820710 ~2001
876615143175323028710 ~2001
876623543175324708710 ~2001
876659579175331915910 ~2001
876670163175334032710 ~2001
8766930911578047563911 ~2003
8766941932104066063311 ~2003
8766952312279407600711 ~2004
876730021526038012710 ~2002
876731621701385296910 ~2002
876786731175357346310 ~2001
876803351175360670310 ~2001
876824303175364860710 ~2001
876834383175366876710 ~2001
876848123175369624710 ~2001
876848663175369732710 ~2001
Home
4.768.925 digits
e-mail
25-05-04