Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
824240771164848154310 ~2001
824261183164852236710 ~2001
824262443164852488710 ~2001
824275559164855111910 ~2001
8243073711483753267911 ~2003
824310341659448272910 ~2002
824338283164867656710 ~2001
824344091164868818310 ~2001
824361971164872394310 ~2001
824367191164873438310 ~2001
824367457494620474310 ~2002
824368141494620884710 ~2002
824389697494633818310 ~2002
8243965271978551664911 ~2003
824399519164879903910 ~2001
824425883164885176710 ~2001
824453183164890636710 ~2001
824526743164905348710 ~2001
8245348614617395221711 ~2004
824540741494724444710 ~2002
824559803164911960710 ~2001
824579039164915807910 ~2001
8246126531319380244911 ~2003
824620151164924030310 ~2001
824628011164925602310 ~2001
Exponent Prime Factor Digits Year
824652011164930402310 ~2001
824654423164930884710 ~2001
824801969659841575310 ~2002
824813261494887956710 ~2002
824826143164965228710 ~2001
824826911164965382310 ~2001
8248619091154806672711 ~2003
824885219164977043910 ~2001
8248874119898648932111 ~2005
824961947659969557710 ~2002
824974859659979887310 ~2002
825036479165007295910 ~2001
8250486671320077867311 ~2003
825051011165010202310 ~2001
8250544791485098062311 ~2003
825070091165014018310 ~2001
8250709571320113531311 ~2003
825081671165016334310 ~2001
825095879165019175910 ~2001
8251157411815254630311 ~2003
825115919165023183910 ~2001
825123193495073915910 ~2002
8251242171155173903911 ~2003
825128411165025682310 ~2001
825233411165046682310 ~2001
Exponent Prime Factor Digits Year
825237689660190151310 ~2002
825248591165049718310 ~2001
825263039165052607910 ~2001
825271283165054256710 ~2001
825325331165065066310 ~2001
825337283165067456710 ~2001
825365231165073046310 ~2001
825383483165076696710 ~2001
825441143165088228710 ~2001
825447611165089522310 ~2001
825448123825448123110 ~2002
825481691165096338310 ~2001
825507073495304243910 ~2002
825524461495314676710 ~2002
825525479165105095910 ~2001
825534071165106814310 ~2001
825544337495326602310 ~2002
825553753495332251910 ~2002
825556103165111220710 ~2001
825582371165116474310 ~2001
825627359165125471910 ~2001
8256412911486154323911 ~2003
825669371165133874310 ~2001
825694823165138964710 ~2001
825701531165140306310 ~2001
Exponent Prime Factor Digits Year
825710843165142168710 ~2001
825728399165145679910 ~2001
825750251165150050310 ~2001
825763901495458340710 ~2002
825789233495473539910 ~2002
825872711165174542310 ~2001
825875663165175132710 ~2001
825876563165175312710 ~2001
825880823165176164710 ~2001
825903671165180734310 ~2001
825908939165181787910 ~2001
825966671165193334310 ~2001
825967873495580723910 ~2002
825989039165197807910 ~2001
825991619165198323910 ~2001
826043063165208612710 ~2001
826063163165212632710 ~2001
826075829660860663310 ~2002
826115501660892400910 ~2002
826168571165233714310 ~2001
826220183165244036710 ~2001
826233119165246623910 ~2001
826239059165247811910 ~2001
826315631165263126310 ~2001
826325771165265154310 ~2001
Home
4.768.925 digits
e-mail
25-05-04