Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1044394979208878995910 ~2001
1044431681626659008710 ~2003
1044439559208887911910 ~2001
1044467351208893470310 ~2001
1044506663208901332710 ~2001
1044536477835629181710 ~2003
1044562061626737236710 ~2003
1044571211208914242310 ~2001
1044594539208918907910 ~2001
1044673379208934675910 ~2001
1044769991208953998310 ~2001
1044786311208957262310 ~2001
1044796163208959232710 ~2001
1044888253626932951910 ~2003
1044893303208978660710 ~2001
1044955403208991080710 ~2001
1044958619208991723910 ~2001
1044969899208993979910 ~2001
1045018979209003795910 ~2001
10450707791045070779111 ~2003
1045118603209023720710 ~2001
1045138079209027615910 ~2001
1045141931209028386310 ~2001
1045143923209028784710 ~2001
1045168343209033668710 ~2001
Exponent Prime Factor Digits Year
1045238879209047775910 ~2001
10452487031672397924911 ~2004
1045341599836273279310 ~2003
1045364057627218434310 ~2003
1045378571209075714310 ~2001
1045536071209107214310 ~2001
1045544963209108992710 ~2001
10455518532300214076711 ~2004
1045556951209111390310 ~2001
1045578791209115758310 ~2001
1045615253627369151910 ~2003
1045642991209128598310 ~2001
1045690313627414187910 ~2003
1045693619209138723910 ~2001
1045707623209141524710 ~2001
1045756199209151239910 ~2001
1045763123209152624710 ~2001
10457883072509891936911 ~2004
1045837823209167564710 ~2001
1045843439209168687910 ~2001
1045862591209172518310 ~2001
1045904063209180812710 ~2001
1045930133627558079910 ~2003
1045958579209191715910 ~2001
1045978169836782535310 ~2003
Exponent Prime Factor Digits Year
1046077691209215538310 ~2001
1046132699836906159310 ~2003
1046146681627688008710 ~2003
1046167043209233408710 ~2001
1046176559209235311910 ~2001
10462166931464703370311 ~2004
1046269739209253947910 ~2001
1046290163209258032710 ~2001
1046327591209265518310 ~2001
1046361479209272295910 ~2001
1046389931209277986310 ~2001
1046406377837125101710 ~2003
1046474413627884647910 ~2003
1046478203209295640710 ~2001
1046489243209297848710 ~2001
10465379711046537971111 ~2003
1046590379837272303310 ~2003
1046597813627958687910 ~2003
1046609519209321903910 ~2001
1046616383209323276710 ~2001
1046620583209324116710 ~2001
1046632439209326487910 ~2001
1046634119209326823910 ~2001
1046635453627981271910 ~2003
1046664863209332972710 ~2001
Exponent Prime Factor Digits Year
1046739437837391549710 ~2003
1046770883209354176710 ~2001
1046807999209361599910 ~2001
1046819783209363956710 ~2001
10468250272512380064911 ~2004
1046908211209381642310 ~2001
10469291091465700752711 ~2004
1046933291209386658310 ~2001
1047013403209402680710 ~2001
10470327431047032743111 ~2003
1047032891209406578310 ~2001
1047049259209409851910 ~2001
1047070261628242156710 ~2003
10471196511884815371911 ~2004
1047129353628277611910 ~2003
1047137411209427482310 ~2001
1047246803209449360710 ~2001
10472488271885047888711 ~2004
10472489591047248959111 ~2003
1047292193628375315910 ~2003
10472986574189194628111 ~2005
1047349799209469959910 ~2001
1047351083209470216710 ~2001
1047399623209479924710 ~2001
1047402959209480591910 ~2001
Home
4.768.925 digits
e-mail
25-05-04