Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
873903839174780767910 ~2001
873914999174782999910 ~2001
873945491174789098310 ~2001
873947771174789554310 ~2001
874021441524412864710 ~2002
874033691174806738310 ~2001
8740414332097699439311 ~2003
874059779174811955910 ~2001
874063163174812632710 ~2001
874129631174825926310 ~2001
874177439174835487910 ~2001
874205291174841058310 ~2001
874234499174846899910 ~2001
874300571174860114310 ~2001
874309979174861995910 ~2001
874331231174866246310 ~2001
874401167699520933710 ~2002
874406831174881366310 ~2001
874407851174881570310 ~2001
874417223174883444710 ~2001
874418177524650906310 ~2002
874424423174884884710 ~2001
874449041524669424710 ~2002
874472243174894448710 ~2001
874480283174896056710 ~2001
Exponent Prime Factor Digits Year
874513691174902738310 ~2001
874580831174916166310 ~2001
8746350772623905231111 ~2004
874639133524783479910 ~2002
874685219699748175310 ~2002
874685621524811372710 ~2002
874694819174938963910 ~2001
874704569699763655310 ~2002
8747088192099301165711 ~2003
874727459174945491910 ~2001
8747530972624259291111 ~2004
874758023174951604710 ~2001
874791059174958211910 ~2001
874791803174958360710 ~2001
874794059174958811910 ~2001
874845781524907468710 ~2002
8748618291224806560711 ~2003
874959083174991816710 ~2001
874973063174994612710 ~2001
875042123175008424710 ~2001
875057591175011518310 ~2001
875059631175011926310 ~2001
875077403175015480710 ~2001
875087159175017431910 ~2001
875090063175018012710 ~2001
Exponent Prime Factor Digits Year
875160599700128479310 ~2002
875200811175040162310 ~2001
87520411124680755930312 ~2006
875299031175059806310 ~2001
875304011175060802310 ~2001
875370059175074011910 ~2001
875407217525244330310 ~2002
875448419175089683910 ~2001
875461211175092242310 ~2001
875492399175098479910 ~2001
875550911175110182310 ~2001
875559803175111960710 ~2001
875560379175112075910 ~2001
875593931175118786310 ~2001
875603159175120631910 ~2001
875617331175123466310 ~2001
875623499175124699910 ~2001
875629211175125842310 ~2001
875639593525383755910 ~2002
875657099175131419910 ~2001
875665061525399036710 ~2002
875675351175135070310 ~2001
875675483175135096710 ~2001
875705821525423492710 ~2002
875706743175141348710 ~2001
Exponent Prime Factor Digits Year
875725997525435598310 ~2002
875771077525462646310 ~2002
875788883175157776710 ~2001
875821883175164376710 ~2001
875839511175167902310 ~2001
875853119175170623910 ~2001
875855339175171067910 ~2001
875879519175175903910 ~2001
875897531175179506310 ~2001
875916683175183336710 ~2001
875954357700763485710 ~2002
875966159175193231910 ~2001
875984783175196956710 ~2001
875997959175199591910 ~2001
876032657525619594310 ~2002
876041567700833253710 ~2002
876051023175210204710 ~2001
876058067700846453710 ~2002
876074579175214915910 ~2001
876083063175216612710 ~2001
876116779876116779110 ~2003
876131561525678936710 ~2002
8761327372628398211111 ~2004
876141743175228348710 ~2001
876164111175232822310 ~2001
Home
4.724.182 digits
e-mail
25-04-13