Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
820248683164049736710 ~2001
820258979164051795910 ~2001
820275119164055023910 ~2001
8203009631968722311311 ~2003
820307363164061472710 ~2001
820339511164067902310 ~2001
820360979164072195910 ~2001
820390223164078044710 ~2001
820398329656318663310 ~2002
820438181492262908710 ~2002
820467239164093447910 ~2001
820470661492282396710 ~2002
8205117173117944524711 ~2004
8205167691148723476711 ~2003
820527431656421944910 ~2002
820539497656431597710 ~2002
820631351164126270310 ~2001
820645433492387259910 ~2002
820688639164137727910 ~2001
820689817492413890310 ~2002
820706123164141224710 ~2001
820710239164142047910 ~2001
820725623164145124710 ~2001
820759883164151976710 ~2001
820783091164156618310 ~2001
Exponent Prime Factor Digits Year
820797023164159404710 ~2001
820807943164161588710 ~2001
820819661656655728910 ~2002
820825763164165152710 ~2001
820836713492502027910 ~2002
820836743164167348710 ~2001
820865231164173046310 ~2001
820886831164177366310 ~2001
820890419164178083910 ~2001
821007419164201483910 ~2001
821013863164202772710 ~2001
821016323164203264710 ~2001
821016401492609840710 ~2002
821026523164205304710 ~2001
821056763164211352710 ~2001
821088683164217736710 ~2001
821102497492661498310 ~2002
821134997656907997710 ~2002
82115548120364655928912 ~2006
821236393492741835910 ~2002
8212511771314001883311 ~2003
821303783164260756710 ~2001
821307107657045685710 ~2002
821315219164263043910 ~2001
8213270271971184864911 ~2003
Exponent Prime Factor Digits Year
821352023164270404710 ~2001
821415659164283131910 ~2001
821428271164285654310 ~2001
821429639164285927910 ~2001
8214418073942920673711 ~2004
8214478971150027055911 ~2003
821449859164289971910 ~2001
821469443164293888710 ~2001
821492123164298424710 ~2001
821504951164300990310 ~2001
8215241833450401568711 ~2004
821536559164307311910 ~2001
821569019164313803910 ~2001
821598311164319662310 ~2001
821611601492966960710 ~2002
821639459164327891910 ~2001
821676899164335379910 ~2001
821678771164335754310 ~2001
821682601493009560710 ~2002
821700281657360224910 ~2002
821708711164341742310 ~2001
821711771164342354310 ~2001
821722691164344538310 ~2001
821743157493045894310 ~2002
821765471164353094310 ~2001
Exponent Prime Factor Digits Year
821768999164353799910 ~2001
821784191164356838310 ~2001
821790601493074360710 ~2002
821812571164362514310 ~2001
821814551164362910310 ~2001
821858363164371672710 ~2001
821861531164372306310 ~2001
821882123164376424710 ~2001
821893703164378740710 ~2001
821916923164383384710 ~2001
821939903164387980710 ~2001
821948801657559040910 ~2002
821963699164392739910 ~2001
821981353493188811910 ~2002
82198174721700318120912 ~2006
822023759164404751910 ~2001
822026033493215619910 ~2002
822032831164406566310 ~2001
822042913493225747910 ~2002
822054179164410835910 ~2001
822076217493245730310 ~2002
822101459164420291910 ~2001
822112223164422444710 ~2001
822150313493290187910 ~2002
822174131164434826310 ~2001
Home
4.768.925 digits
e-mail
25-05-04