Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
8064213913870822676911 ~2004
806455943161291188710 ~2001
806490071161298014310 ~2001
806492003161298400710 ~2001
8065037571129105259911 ~2003
806520359161304071910 ~2001
806604983161320996710 ~2001
806609519161321903910 ~2001
806622203161324440710 ~2001
806625377645300301710 ~2002
8066404135807810973711 ~2004
8067014036453611224111 ~2004
806705521484023312710 ~2002
806743991161348798310 ~2001
8067657592581650428911 ~2004
806797991161359598310 ~2001
8068227891129551904711 ~2003
806934143161386828710 ~2001
806946719161389343910 ~2001
806975501484185300710 ~2002
8069937112582379875311 ~2004
806998693484199215910 ~2002
807008459161401691910 ~2001
807015311161403062310 ~2001
807019259161403851910 ~2001
Exponent Prime Factor Digits Year
807042023161408404710 ~2001
807044921484226952710 ~2002
807073937484244362310 ~2002
807126839161425367910 ~2001
807132299161426459910 ~2001
8071527193228610876111 ~2004
807164903161432980710 ~2001
807174239161434847910 ~2001
8071816511452926971911 ~2003
807190019161438003910 ~2001
807235391161447078310 ~2001
807266921484360152710 ~2002
8072753691130185516711 ~2003
807278519161455703910 ~2001
807319703161463940710 ~2001
807329821484397892710 ~2002
807331463161466292710 ~2001
807346117484407670310 ~2002
807347351161469470310 ~2001
807350339161470067910 ~2001
807380437484428262310 ~2002
807392413484435447910 ~2002
807434891161486978310 ~2001
807447299161489459910 ~2001
807476711161495342310 ~2001
Exponent Prime Factor Digits Year
807514343161502868710 ~2001
807566471646053176910 ~2002
8076518993392137975911 ~2004
807652259161530451910 ~2001
8076584475169014060911 ~2004
807662351161532470310 ~2001
807670823161534164710 ~2001
8076789311453822075911 ~2003
807699071161539814310 ~2001
807699779161539955910 ~2001
807707063161541412710 ~2001
807724583161544916710 ~2001
807740819161548163910 ~2001
80774754714377906336712 ~2005
807783913484670347910 ~2002
807788251807788251110 ~2002
807821743807821743110 ~2002
807851399161570279910 ~2001
807856919161571383910 ~2001
807861721484717032710 ~2002
807882863161576572710 ~2001
807889603807889603110 ~2002
807910319161582063910 ~2001
807943867807943867110 ~2002
807944741484766844710 ~2002
Exponent Prime Factor Digits Year
807948731161589746310 ~2001
808011053484806631910 ~2002
808018499161603699910 ~2001
808040657484824394310 ~2002
808077563161615512710 ~2001
808078499161615699910 ~2001
808085891161617178310 ~2001
808105061646484048910 ~2002
808112951161622590310 ~2001
808148699161629739910 ~2001
808207571646566056910 ~2002
808218727808218727110 ~2002
808272071161654414310 ~2001
8082781974526357903311 ~2004
808282381484969428710 ~2002
808321991161664398310 ~2001
808345211161669042310 ~2001
808363943161672788710 ~2001
808371923161674384710 ~2001
808380841485028504710 ~2002
808455839161691167910 ~2001
8084776331778650792711 ~2003
808477919161695583910 ~2001
808487219161697443910 ~2001
808507079161701415910 ~2001
Home
4.768.925 digits
e-mail
25-05-04