Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
808522763161704552710 ~2001
8085247215659673047111 ~2004
808532477485119486310 ~2002
80853277114230176769712 ~2005
808562003161712400710 ~2001
8085924611778903414311 ~2003
808594379161718875910 ~2001
808604171161720834310 ~2001
808615943161723188710 ~2001
808622231161724446310 ~2001
808650443161730088710 ~2001
808684511161736902310 ~2001
808685963161737192710 ~2001
808695059161739011910 ~2001
808711223161742244710 ~2001
808722119161744423910 ~2001
8087351171940964280911 ~2003
808741991161748398310 ~2001
808745579161749115910 ~2001
808761659161752331910 ~2001
808793291161758658310 ~2001
808812551161762510310 ~2001
8088381531132373414311 ~2003
808839371161767874310 ~2001
808868843161773768710 ~2001
Exponent Prime Factor Digits Year
808882747808882747110 ~2002
808882889647106311310 ~2002
8088840491941321717711 ~2003
808920323161784064710 ~2001
808999571161799914310 ~2001
809003201485401920710 ~2002
809015279161803055910 ~2001
809032811161806562310 ~2001
809038343161807668710 ~2001
8090465711294474513711 ~2003
809055239161811047910 ~2001
809079899161815979910 ~2001
809082503161816500710 ~2001
809097791161819558310 ~2001
809111399647289119310 ~2002
809135039161827007910 ~2001
809142443161828488710 ~2001
809152583161830516710 ~2001
809172097485503258310 ~2002
8091974533722308283911 ~2004
809222591161844518310 ~2001
809224679161844935910 ~2001
809244539161848907910 ~2001
809253299161850659910 ~2001
809295419161859083910 ~2001
Exponent Prime Factor Digits Year
809297123161859424710 ~2001
809298569647438855310 ~2002
809323799161864759910 ~2001
809337779161867555910 ~2001
809348783161869756710 ~2001
8093516773237406708111 ~2004
809386631161877326310 ~2001
809405711161881142310 ~2001
809446139161889227910 ~2001
809463923161892784710 ~2001
809504281485702568710 ~2002
809576123161915224710 ~2001
809591759161918351910 ~2001
809592359161918471910 ~2001
809628923161925784710 ~2001
809639783161927956710 ~2001
809677391161935478310 ~2001
809687999161937599910 ~2001
809711879161942375910 ~2001
809734091161946818310 ~2001
809784203161956840710 ~2001
809786759161957351910 ~2001
809788079161957615910 ~2001
809793203161958640710 ~2001
809809439161961887910 ~2001
Exponent Prime Factor Digits Year
809809823161961964710 ~2001
809829491161965898310 ~2001
809834611809834611110 ~2002
8098392293887228299311 ~2004
809858039161971607910 ~2001
809863451161972690310 ~2001
809947559161989511910 ~2001
809948177485968906310 ~2002
809961281485976768710 ~2002
809992979161998595910 ~2001
810027059162005411910 ~2001
8100316331296050612911 ~2003
810047519162009503910 ~2001
810049283162009856710 ~2001
810071831162014366310 ~2001
810160511162032102310 ~2001
810227843162045568710 ~2001
810229397648183517710 ~2002
810249311162049862310 ~2001
810302651162060530310 ~2001
810316079162063215910 ~2001
810318059162063611910 ~2001
810327071162065414310 ~2001
810334991162066998310 ~2001
810382451162076490310 ~2001
Home
4.768.925 digits
e-mail
25-05-04