Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
804427511160885502310 ~2001
804439763160887952710 ~2001
804485879160897175910 ~2001
804491593482694955910 ~2002
804528083160905616710 ~2001
8045290031287246404911 ~2003
804551519160910303910 ~2001
804555623160911124710 ~2001
804581279160916255910 ~2001
804612383160922476710 ~2001
804614561482768736710 ~2002
804654239160930847910 ~2001
804662861643730288910 ~2002
804663793482798275910 ~2002
804672241482803344710 ~2002
804711599160942319910 ~2001
804730859160946171910 ~2001
804781199160956239910 ~2001
804808139160961627910 ~2001
804812909643850327310 ~2002
804877511160975502310 ~2001
804885671160977134310 ~2001
8049125171931790040911 ~2003
804917219160983443910 ~2001
804918899160983779910 ~2001
Exponent Prime Factor Digits Year
804923783160984756710 ~2001
804934523160986904710 ~2001
804958943160991788710 ~2001
804963539160992707910 ~2001
804977039160995407910 ~2001
804981839160996367910 ~2001
8049961033380983632711 ~2004
805005863161001172710 ~2001
805031873483019123910 ~2002
805045079161009015910 ~2001
80505541148947368988912 ~2007
805067099161013419910 ~2001
805107983161021596710 ~2001
805127819161025563910 ~2001
805131059161026211910 ~2001
805146059161029211910 ~2001
805164911161032982310 ~2001
805192439161038487910 ~2001
805198391161039678310 ~2001
805212581483127548710 ~2002
805228199161045639910 ~2001
805233839161046767910 ~2001
805241219161048243910 ~2001
805257317483154390310 ~2002
8052678673221071468111 ~2004
Exponent Prime Factor Digits Year
805284719161056943910 ~2001
805333631161066726310 ~2001
805340843161068168710 ~2001
805369451161073890310 ~2001
805384631161076926310 ~2001
805415951644332760910 ~2002
805432559161086511910 ~2001
805467857483280714310 ~2002
805484951644387960910 ~2002
805561019161112203910 ~2001
805572359161114471910 ~2001
805578239161115647910 ~2001
805582559161116511910 ~2001
805629179161125835910 ~2001
8056443112094675208711 ~2003
805667399161133479910 ~2001
805684501483410700710 ~2002
805705679161141135910 ~2001
805712123161142424710 ~2001
8057150691128001096711 ~2003
805717343161143468710 ~2001
805732223161146444710 ~2001
805766303161153260710 ~2001
8058081892417424567111 ~2003
805814939161162987910 ~2001
Exponent Prime Factor Digits Year
805840967644672773710 ~2002
805884361483530616710 ~2002
805910531161182106310 ~2001
805916123161183224710 ~2001
805952363161190472710 ~2001
805960501483576300710 ~2002
805960643161192128710 ~2001
8059746431289559428911 ~2003
806013899161202779910 ~2001
806042123161208424710 ~2001
806069783161213956710 ~2001
806072831161214566310 ~2001
806080883161216176710 ~2001
8061273671451029260711 ~2003
806142131161228426310 ~2001
806156723161231344710 ~2001
806172491161234498310 ~2001
806203201483721920710 ~2002
806225351161245070310 ~2001
806228317483736990310 ~2002
806274191161254838310 ~2001
806288051161257610310 ~2001
806293777483776266310 ~2002
806399591161279918310 ~2001
806412311161282462310 ~2001
Home
4.768.925 digits
e-mail
25-05-04