Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
802612883160522576710 ~2001
802671011160534202310 ~2001
802703939160540787910 ~2001
802707539160541507910 ~2001
802724171160544834310 ~2001
802745903160549180710 ~2001
802747271160549454310 ~2001
802774751160554950310 ~2001
802778939160555787910 ~2001
802788761481673256710 ~2002
802813883160562776710 ~2001
8028856511284617041711 ~2003
802899011642319208910 ~2002
802919291160583858310 ~2001
802931183160586236710 ~2001
802965041481779024710 ~2002
8029819973051331588711 ~2004
8029916774336155055911 ~2004
803001191160600238310 ~2001
803021321481812792710 ~2002
803041693481825015910 ~2002
803064877481838926310 ~2002
8030715893854743627311 ~2004
803109491160621898310 ~2001
803157119160631423910 ~2001
Exponent Prime Factor Digits Year
803181823803181823110 ~2002
803186651160637330310 ~2001
80319967912851194864112 ~2005
803221619160644323910 ~2001
803244671160648934310 ~2001
803268161642614528910 ~2002
803286301481971780710 ~2002
803290751160658150310 ~2001
8032968492409890547111 ~2003
803352479160670495910 ~2001
8033588635302168495911 ~2004
803365601642692480910 ~2002
803377073482026243910 ~2002
803386949642709559310 ~2002
803418683160683736710 ~2001
803443559160688711910 ~2001
803463539160692707910 ~2001
8034704271446246768711 ~2003
803470859160694171910 ~2001
803486129642788903310 ~2002
803516257482109754310 ~2002
803523359160704671910 ~2001
803537939642830351310 ~2002
803541239160708247910 ~2001
803553097482131858310 ~2002
Exponent Prime Factor Digits Year
803606093482163655910 ~2002
803615999160723199910 ~2001
803642699160728539910 ~2001
803654963160730992710 ~2001
803681381482208828710 ~2002
803721859803721859110 ~2002
803730899160746179910 ~2001
803783699160756739910 ~2001
803788343160757668710 ~2001
803801951160760390310 ~2001
803832277482299366310 ~2002
803841359160768271910 ~2001
803874527643099621710 ~2002
803878697482327218310 ~2002
803891723160778344710 ~2001
803921003160784200710 ~2001
803921099160784219910 ~2001
803947559160789511910 ~2001
803973959160794791910 ~2001
803995097482397058310 ~2002
8040446111447280299911 ~2003
804074671804074671110 ~2002
804087023160817404710 ~2001
804092363160818472710 ~2001
804093539643274831310 ~2002
Exponent Prime Factor Digits Year
804099479160819895910 ~2001
804102119160820423910 ~2001
8041213271286594123311 ~2003
804139103160827820710 ~2001
804147983160829596710 ~2001
804160583160832116710 ~2001
804164443804164443110 ~2002
804175343160835068710 ~2001
804175643160835128710 ~2001
804178751160835750310 ~2001
804192023160838404710 ~2001
804218351160843670310 ~2001
804222959160844591910 ~2001
804242399160848479910 ~2001
804252989643402391310 ~2002
80425539123966810651912 ~2006
8042701393377934583911 ~2004
8042741293217096516111 ~2004
804296291643437032910 ~2002
804301919643441535310 ~2002
804322097482593258310 ~2002
804332723160866544710 ~2001
804380573482628343910 ~2002
804395639160879127910 ~2001
804399679804399679110 ~2002
Home
4.768.925 digits
e-mail
25-05-04