Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
800772023160154404710 ~2001
800789357640631485710 ~2002
800793577480476146310 ~2002
800810291160162058310 ~2001
800811311160162262310 ~2001
800832023160166404710 ~2001
800847623160169524710 ~2001
800862479160172495910 ~2001
800868479160173695910 ~2001
800873039640698431310 ~2002
800890019160178003910 ~2001
800890091160178018310 ~2001
800900173480540103910 ~2002
800925179160185035910 ~2001
800935631160187126310 ~2001
800948639160189727910 ~2001
800955251160191050310 ~2001
800991167640792933710 ~2002
800997401640797920910 ~2002
801030299160206059910 ~2001
801057359160211471910 ~2001
801059557480635734310 ~2002
801079931160215986310 ~2001
801090971160218194310 ~2001
801104281480662568710 ~2002
Exponent Prime Factor Digits Year
8011102793364663171911 ~2004
801117797480670678310 ~2002
801127583160225516710 ~2001
801130717480678430310 ~2002
801147059160229411910 ~2001
801182831160236566310 ~2001
8011910034005955015111 ~2004
801204983160240996710 ~2001
801231971160246394310 ~2001
801328259160265651910 ~2001
801346699801346699110 ~2002
801355991160271198310 ~2001
801366491160273298310 ~2001
801401291160280258310 ~2001
801419051160283810310 ~2001
801433823160286764710 ~2001
801467963160293592710 ~2001
801470051160294010310 ~2001
801493559160298711910 ~2001
801496523160299304710 ~2001
801502463160300492710 ~2001
801559691160311938310 ~2001
801567983160313596710 ~2001
801574751160314950310 ~2001
801578699160315739910 ~2001
Exponent Prime Factor Digits Year
801671459160334291910 ~2001
801675431160335086310 ~2001
801679919160335983910 ~2001
801707807641366245710 ~2002
801722111160344422310 ~2001
801735911160347182310 ~2001
801741001481044600710 ~2002
801741617641393293710 ~2002
801757571160351514310 ~2001
801768101641414480910 ~2002
801834793481100875910 ~2002
801875953481125571910 ~2002
801890651160378130310 ~2001
801915581641532464910 ~2002
8019248831283079812911 ~2003
801934823160386964710 ~2001
802025639160405127910 ~2001
802071059160414211910 ~2001
802083371160416674310 ~2001
802107599160421519910 ~2001
802124423160424884710 ~2001
802170599160434119910 ~2001
8021756031925221447311 ~2003
802214183160442836710 ~2001
802215959160443191910 ~2001
Exponent Prime Factor Digits Year
802222703160444540710 ~2001
802231019160446203910 ~2001
8022435771123141007911 ~2003
802256249641804999310 ~2002
802265873481359523910 ~2002
802286063160457212710 ~2001
8022903891925496933711 ~2003
802296083160459216710 ~2001
802296503160459300710 ~2001
802313423160462684710 ~2001
802328411641862728910 ~2002
802356341641885072910 ~2002
802384397481430638310 ~2002
802389353481433611910 ~2002
802410923160482184710 ~2001
802416599160483319910 ~2001
802425487802425487110 ~2002
802426853481456111910 ~2002
802451483160490296710 ~2001
802451579160490315910 ~2001
802487633481492579910 ~2002
802511821481507092710 ~2002
802543691160508738310 ~2001
802565399160513079910 ~2001
802597253481558351910 ~2002
Home
4.768.925 digits
e-mail
25-05-04