Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
798781979159756395910 ~2001
798793343159758668710 ~2001
798833351159766670310 ~2001
798843803159768760710 ~2001
798848159159769631910 ~2001
7988674091757508299911 ~2003
798870911159774182310 ~2001
798878243159775648710 ~2001
798911231159782246310 ~2001
798919679159783935910 ~2001
798956663159791332710 ~2001
798972131159794426310 ~2001
798998381479399028710 ~2002
7990057371118608031911 ~2003
799010519159802103910 ~2001
799021739159804347910 ~2001
799049063159809812710 ~2001
799078921479447352710 ~2002
799114583159822916710 ~2001
799139557479483734310 ~2002
799160291159832058310 ~2001
799168379159833675910 ~2001
799182953479509771910 ~2002
799183499159836699910 ~2001
799218379799218379110 ~2002
Exponent Prime Factor Digits Year
799229111159845822310 ~2001
799235599799235599110 ~2002
799263299159852659910 ~2001
799274243159854848710 ~2001
799284203159856840710 ~2001
799303451159860690310 ~2001
799314127799314127110 ~2002
799322393479593435910 ~2002
7993881371279021019311 ~2003
799416323159883264710 ~2001
7994608991439029618311 ~2003
799471091159894218310 ~2001
799487879159897575910 ~2001
799528991159905798310 ~2001
7995310271439155848711 ~2003
799537139639629711310 ~2002
799551899159910379910 ~2001
799561571159912314310 ~2001
799588547639670837710 ~2002
799662323159932464710 ~2001
7996950591439451106311 ~2003
7997502911439550523911 ~2003
799760317479856190310 ~2002
799782001479869200710 ~2002
799784291159956858310 ~2001
Exponent Prime Factor Digits Year
799798199159959639910 ~2001
7998101171279696187311 ~2003
799820537639856429710 ~2002
799820711159964142310 ~2001
799853101479911860710 ~2002
799865459639892367310 ~2002
799866659159973331910 ~2001
799901363159980272710 ~2001
799928399159985679910 ~2001
799989251159997850310 ~2001
800016443160003288710 ~2001
800073611160014722310 ~2001
8001265331760278372711 ~2003
800132219160026443910 ~2001
800177051160035410310 ~2001
800187497480112498310 ~2002
800192321480115392710 ~2002
800198111160039622310 ~2001
800211121480126672710 ~2002
800211563160042312710 ~2001
800220097480132058310 ~2002
800242511160048502310 ~2001
800263043160052608710 ~2001
800266739160053347910 ~2001
800267771160053554310 ~2001
Exponent Prime Factor Digits Year
800270951160054190310 ~2001
800294597480176758310 ~2002
8003615397203253851111 ~2005
800373599160074719910 ~2001
800380153480228091910 ~2002
800381303160076260710 ~2001
800395859160079171910 ~2001
8004189432721424406311 ~2004
800464523160092904710 ~2001
800506979160101395910 ~2001
800508239160101647910 ~2001
800510159640408127310 ~2002
800528819160105763910 ~2001
800598959160119791910 ~2001
8006024271441084368711 ~2003
800614019160122803910 ~2001
8006551092401965327111 ~2003
800657111160131422310 ~2001
800658923160131784710 ~2001
800689199160137839910 ~2001
800731163160146232710 ~2001
800739119160147823910 ~2001
800741171160148234310 ~2001
800763191160152638310 ~2001
800765183160153036710 ~2001
Home
4.768.925 digits
e-mail
25-05-04