Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
801419051160283810310 ~2001
801433823160286764710 ~2001
801467963160293592710 ~2001
801470051160294010310 ~2001
801493559160298711910 ~2001
801496523160299304710 ~2001
801502463160300492710 ~2001
801559691160311938310 ~2001
801567983160313596710 ~2001
801574751160314950310 ~2001
801578699160315739910 ~2001
801671459160334291910 ~2001
801675431160335086310 ~2001
801679919160335983910 ~2001
801707807641366245710 ~2002
801722111160344422310 ~2001
801735911160347182310 ~2001
801741001481044600710 ~2002
801741617641393293710 ~2002
801757571160351514310 ~2001
801768101641414480910 ~2002
801834793481100875910 ~2002
801875953481125571910 ~2002
801890651160378130310 ~2001
801915581641532464910 ~2002
Exponent Prime Factor Digits Year
8019248831283079812911 ~2003
801934823160386964710 ~2001
802025639160405127910 ~2001
802071059160414211910 ~2001
802083371160416674310 ~2001
802107599160421519910 ~2001
802124423160424884710 ~2001
802170599160434119910 ~2001
8021756031925221447311 ~2003
802214183160442836710 ~2001
802215959160443191910 ~2001
802222703160444540710 ~2001
802231019160446203910 ~2001
8022435771123141007911 ~2003
802256249641804999310 ~2002
802265873481359523910 ~2002
802286063160457212710 ~2001
8022903891925496933711 ~2003
802296083160459216710 ~2001
802296503160459300710 ~2001
802313423160462684710 ~2001
802328411641862728910 ~2002
802356341641885072910 ~2002
802384397481430638310 ~2002
802389353481433611910 ~2002
Exponent Prime Factor Digits Year
802410923160482184710 ~2001
802416599160483319910 ~2001
802425487802425487110 ~2002
802426853481456111910 ~2002
802451483160490296710 ~2001
802451579160490315910 ~2001
802487633481492579910 ~2002
802511821481507092710 ~2002
802543691160508738310 ~2001
802565399160513079910 ~2001
802597253481558351910 ~2002
802612883160522576710 ~2001
802671011160534202310 ~2001
802703939160540787910 ~2001
802707539160541507910 ~2001
802724171160544834310 ~2001
802745903160549180710 ~2001
802747271160549454310 ~2001
802774751160554950310 ~2001
802778939160555787910 ~2001
802788761481673256710 ~2002
802813883160562776710 ~2001
8028856511284617041711 ~2003
802899011642319208910 ~2002
802919291160583858310 ~2001
Exponent Prime Factor Digits Year
802931183160586236710 ~2001
802965041481779024710 ~2002
8029819973051331588711 ~2004
8029916774336155055911 ~2004
803001191160600238310 ~2001
803021321481812792710 ~2002
803041693481825015910 ~2002
803064877481838926310 ~2002
8030715893854743627311 ~2004
803109491160621898310 ~2001
803157119160631423910 ~2001
803181823803181823110 ~2002
803186651160637330310 ~2001
80319967912851194864112 ~2005
803221619160644323910 ~2001
803244671160648934310 ~2001
803268161642614528910 ~2002
803286301481971780710 ~2002
803290751160658150310 ~2001
8032968492409890547111 ~2003
803352479160670495910 ~2001
8033588635302168495911 ~2004
803365601642692480910 ~2002
803377073482026243910 ~2002
803418683160683736710 ~2001
Home
4.724.182 digits
e-mail
25-04-13