Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
803443559160688711910 ~2001
803463539160692707910 ~2001
8034704271446246768711 ~2003
803470859160694171910 ~2001
803486129642788903310 ~2002
803516257482109754310 ~2002
803523359160704671910 ~2001
803537939642830351310 ~2002
803541239160708247910 ~2001
803553097482131858310 ~2002
803606093482163655910 ~2002
803615999160723199910 ~2001
803642699160728539910 ~2001
803654963160730992710 ~2001
803681381482208828710 ~2002
803721859803721859110 ~2002
803730899160746179910 ~2001
803783699160756739910 ~2001
803788343160757668710 ~2001
803801951160760390310 ~2001
803832277482299366310 ~2002
803841359160768271910 ~2001
803874527643099621710 ~2002
803878697482327218310 ~2002
803891723160778344710 ~2001
Exponent Prime Factor Digits Year
803921003160784200710 ~2001
803921099160784219910 ~2001
803947559160789511910 ~2001
803973959160794791910 ~2001
803995097482397058310 ~2002
8040446111447280299911 ~2003
804074671804074671110 ~2002
804087023160817404710 ~2001
804092363160818472710 ~2001
804093539643274831310 ~2002
804099479160819895910 ~2001
804102119160820423910 ~2001
8041213271286594123311 ~2003
804139103160827820710 ~2001
804160583160832116710 ~2001
804164443804164443110 ~2002
804175343160835068710 ~2001
804175643160835128710 ~2001
804178751160835750310 ~2001
804192023160838404710 ~2001
804218351160843670310 ~2001
804222959160844591910 ~2001
804242399160848479910 ~2001
804252989643402391310 ~2002
80425539123966810651912 ~2006
Exponent Prime Factor Digits Year
8042701393377934583911 ~2004
8042741293217096516111 ~2004
804296291643437032910 ~2002
804301919643441535310 ~2002
804322097482593258310 ~2002
804332723160866544710 ~2001
804380573482628343910 ~2002
804395639160879127910 ~2001
804399679804399679110 ~2002
804427511160885502310 ~2001
804439763160887952710 ~2001
804485879160897175910 ~2001
804491593482694955910 ~2002
804528083160905616710 ~2001
8045290031287246404911 ~2003
804551519160910303910 ~2001
804555623160911124710 ~2001
804581279160916255910 ~2001
804612383160922476710 ~2001
804614561482768736710 ~2002
804654239160930847910 ~2001
804662861643730288910 ~2002
804663793482798275910 ~2002
804672241482803344710 ~2002
804711599160942319910 ~2001
Exponent Prime Factor Digits Year
804730859160946171910 ~2001
804781199160956239910 ~2001
804808139160961627910 ~2001
804812909643850327310 ~2002
804877511160975502310 ~2001
804885671160977134310 ~2001
8049125171931790040911 ~2003
804917219160983443910 ~2001
804918899160983779910 ~2001
804923783160984756710 ~2001
804934523160986904710 ~2001
804958943160991788710 ~2001
804963539160992707910 ~2001
804977039160995407910 ~2001
804981839160996367910 ~2001
8049961033380983632711 ~2004
805005863161001172710 ~2001
805031873483019123910 ~2002
805045079161009015910 ~2001
80505541148947368988912 ~2007
805067099161013419910 ~2001
805107983161021596710 ~2001
805127819161025563910 ~2001
805131059161026211910 ~2001
805146059161029211910 ~2001
Home
4.724.182 digits
e-mail
25-04-13