Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
751153043150230608710 ~2000
751157279150231455910 ~2000
751171139150234227910 ~2000
751191491150238298310 ~2000
751221071150244214310 ~2000
751251251150250250310 ~2000
751256711150251342310 ~2000
751319287751319287110 ~2002
751343531150268706310 ~2000
751355903150271180710 ~2000
751356383150271276710 ~2000
751414199150282839910 ~2000
751415123150283024710 ~2000
751421843150284368710 ~2000
751433159150286631910 ~2000
751435463150287092710 ~2000
751468499150293699910 ~2000
751482923150296584710 ~2000
751487903150297580710 ~2000
751527071150305414310 ~2000
751528031150305606310 ~2000
751544543150308908710 ~2000
751644479150328895910 ~2000
751645799150329159910 ~2000
751662623150332524710 ~2000
Exponent Prime Factor Digits Year
751685003150337000710 ~2000
751725743150345148710 ~2000
751744391150348878310 ~2000
75174937727664377073712 ~2006
751751249601400999310 ~2002
751825619150365123910 ~2000
751844441451106664710 ~2001
751844777451106866310 ~2001
751899059150379811910 ~2000
751908383150381676710 ~2000
7519379331804651039311 ~2003
751965191150393038310 ~2000
75199459911580716824712 ~2005
752011619150402323910 ~2000
7520166232406453193711 ~2003
752034917451220950310 ~2001
7520586476016469176111 ~2004
752061671150412334310 ~2000
752078279150415655910 ~2000
752078891150415778310 ~2000
752182283150436456710 ~2000
752223977601779181710 ~2002
752234123150446824710 ~2000
752258603150451720710 ~2000
752316179150463235910 ~2000
Exponent Prime Factor Digits Year
752324063150464812710 ~2000
752355491150471098310 ~2000
752356103150471220710 ~2000
752389091150477818310 ~2000
752425031150485006310 ~2000
752428799601943039310 ~2002
752430179150486035910 ~2000
752481563150496312710 ~2000
752482091150496418310 ~2000
752485523150497104710 ~2000
752490961451494576710 ~2001
752511719150502343910 ~2000
752519987602015989710 ~2002
752544713451526827910 ~2001
752589037451553422310 ~2001
752641871150528374310 ~2000
7526445373010578148111 ~2004
7526455211655820146311 ~2003
752694863150538972710 ~2000
7527097812258129343111 ~2003
752736221451641732710 ~2001
752751011150550202310 ~2000
752774051150554810310 ~2000
752782991150556598310 ~2000
752783051150556610310 ~2000
Exponent Prime Factor Digits Year
752789099150557819910 ~2000
752827259150565451910 ~2000
752837951150567590310 ~2000
752854391150570878310 ~2000
752860331150572066310 ~2000
752869343150573868710 ~2000
752873903150574780710 ~2000
752878843752878843110 ~2002
752883359150576671910 ~2000
752905793451743475910 ~2001
752925149602340119310 ~2002
7529674973614243985711 ~2004
7529760171054166423911 ~2002
752981617451788970310 ~2001
7529963471807191232911 ~2003
753083939150616787910 ~2000
753107363150621472710 ~2000
753135701451881420710 ~2001
7531464892410068764911 ~2003
753196583150639316710 ~2000
753283871150656774310 ~2000
7532845371054598351911 ~2002
753293501451976100710 ~2001
753307237451984342310 ~2001
753307559150661511910 ~2000
Home
4.768.925 digits
e-mail
25-05-04