Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
830483789664387031310 ~2002
8305238179966285804111 ~2005
83053118912457967835112 ~2005
830546219166109243910 ~2001
830554433498332659910 ~2002
830572019166114403910 ~2001
830575289664460231310 ~2002
830575871166115174310 ~2001
8305780331993387279311 ~2003
8305809973820672586311 ~2004
830612669664490135310 ~2002
830616247830616247110 ~2002
830641859166128371910 ~2001
830652899166130579910 ~2001
830711411166142282310 ~2001
830718221498430932710 ~2002
830732951166146590310 ~2001
830736503166147300710 ~2001
830740643166148128710 ~2001
830740871166148174310 ~2001
830765753498459451910 ~2002
830794259166158851910 ~2001
830822231166164446310 ~2001
830824859664659887310 ~2002
830844137664675309710 ~2002
Exponent Prime Factor Digits Year
830851559166170311910 ~2001
830867711166173542310 ~2001
830880691830880691110 ~2002
830897737498538642310 ~2002
830922551166184510310 ~2001
830935799166187159910 ~2001
830943383166188676710 ~2001
830944811166188962310 ~2001
831036179166207235910 ~2001
831041363166208272710 ~2001
831065381498639228710 ~2002
8310696237978268380911 ~2005
831072491166214498310 ~2001
831138433498683059910 ~2002
831148919166229783910 ~2001
831194519166238903910 ~2001
831201659166240331910 ~2001
831206231166241246310 ~2001
831242003166248400710 ~2001
831245491831245491110 ~2002
831251699166250339910 ~2001
831313211166262642310 ~2001
831349643166269928710 ~2001
831411023166282204710 ~2001
831452003166290400710 ~2001
Exponent Prime Factor Digits Year
831459263166291852710 ~2001
831487961665190368910 ~2002
8314913471330386155311 ~2003
831492479166298495910 ~2001
831494399166298879910 ~2001
8315135231330421636911 ~2003
831528251166305650310 ~2001
831529871166305974310 ~2001
831539141498923484710 ~2002
8315502895155611791911 ~2004
831558251166311650310 ~2001
831568499166313699910 ~2001
831655871166331174310 ~2001
831659399166331879910 ~2001
831709121665367296910 ~2002
831720371166344074310 ~2001
831744899166348979910 ~2001
831790259166358051910 ~2001
831797303166359460710 ~2001
831801163831801163110 ~2002
831837563166367512710 ~2001
83186374311313346904912 ~2005
831906563166381312710 ~2001
831906671665525336910 ~2002
831910271665528216910 ~2002
Exponent Prime Factor Digits Year
831931679166386335910 ~2001
8319328976655463176111 ~2005
831973391166394678310 ~2001
832014191166402838310 ~2001
832022039166404407910 ~2001
832023371166404674310 ~2001
832052357499231414310 ~2002
832058303166411660710 ~2001
832091651166418330310 ~2001
832097597499258558310 ~2002
832100837665680669710 ~2002
832105679166421135910 ~2001
832141991166428398310 ~2001
832179851166435970310 ~2001
832212539166442507910 ~2001
832218899166443779910 ~2001
832245383166449076710 ~2001
832301243166460248710 ~2001
832346521499407912710 ~2002
8323593613329437444111 ~2004
832413107665930485710 ~2002
832421123166484224710 ~2001
832430531166486106310 ~2001
832439651166487930310 ~2001
832462999832462999110 ~2002
Home
4.768.925 digits
e-mail
25-05-04