Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
561841391112368278310 ~1999
5618441471011319464711 ~2002
561862207561862207110 ~2001
561885911112377182310 ~1999
561895091112379018310 ~1999
561897683112379536710 ~1999
561899321337139592710 ~2000
561906791112381358310 ~1999
561917417449533933710 ~2001
561929843112385968710 ~1999
561969269786756976710 ~2001
56198572714836423192912 ~2005
561986963112397392710 ~1999
562010081449608064910 ~2001
562028111112405622310 ~1999
562046677337228006310 ~2000
562061183112412236710 ~1999
562073767562073767110 ~2001
562085291112417058310 ~1999
562105259112421051910 ~1999
562106137337263682310 ~2000
562123319112424663910 ~1999
562125253337275151910 ~2000
562128893337277335910 ~2000
562132199112426439910 ~1999
Exponent Prime Factor Digits Year
562132583112426516710 ~1999
562143611112428722310 ~1999
562152421337291452710 ~2000
562157081337294248710 ~2000
562194881337316928710 ~2000
562205783112441156710 ~1999
562218749787106248710 ~2001
562238639112447727910 ~1999
562254911112450982310 ~1999
562258273337354963910 ~2000
562267259112453451910 ~1999
5622737572698914033711 ~2003
562279877337367926310 ~2000
562282631112456526310 ~1999
562283801449827040910 ~2001
562309211112461842310 ~1999
562329503112465900710 ~1999
562376011562376011110 ~2001
562381271112476254310 ~1999
562382003112476400710 ~1999
562395083112479016710 ~1999
562400939112480187910 ~1999
562409801449927840910 ~2001
562409819112481963910 ~1999
562451003112490200710 ~1999
Exponent Prime Factor Digits Year
562483511449986808910 ~2001
562498463112499692710 ~1999
562505159112501031910 ~1999
562545617337527370310 ~2000
562553393337532035910 ~2000
5625652738100939931311 ~2004
562593541337556124710 ~2000
5626019292250407716111 ~2003
562652333337591399910 ~2000
562699721337619832710 ~2000
562701673337621003910 ~2000
562724579112544915910 ~1999
562734383112546876710 ~1999
562743383112548676710 ~1999
562748243112549648710 ~1999
562773221337663932710 ~2000
562792883112558576710 ~1999
562829009450263207310 ~2001
562830239112566047910 ~1999
562848347450278677710 ~2001
562889219112577843910 ~1999
562902611450322088910 ~2001
562905443112581088710 ~1999
562914743112582948710 ~1999
562929239112585847910 ~1999
Exponent Prime Factor Digits Year
562954571112590914310 ~1999
562959779112591955910 ~1999
562960543562960543110 ~2001
563005823112601164710 ~1999
563021603112604320710 ~1999
563029981337817988710 ~2000
563035079112607015910 ~1999
563044523112608904710 ~1999
5630540471013497284711 ~2002
563057303112611460710 ~1999
563063317337837990310 ~2000
563075741450460592910 ~2001
563105771112621154310 ~1999
563130983112626196710 ~1999
563156591112631318310 ~1999
563164603901063364910 ~2002
563177759450542207310 ~2001
563180171112636034310 ~1999
563221853337933111910 ~2000
563230271450584216910 ~2001
563234219112646843910 ~1999
563245883112649176710 ~1999
5632527712703613300911 ~2003
5632630792365704931911 ~2003
563285759112657151910 ~1999
Home
4.724.182 digits
e-mail
25-04-13