Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
530377559106075511910 ~1999
530432159106086431910 ~1999
530432711106086542310 ~1999
530434217318260530310 ~2000
530442623106088524710 ~1999
530442961318265776710 ~2000
530443267530443267110 ~2001
530454143106090828710 ~1999
530457971106091594310 ~1999
5304936411591480923111 ~2002
530506451106101290310 ~1999
530508299106101659910 ~1999
530513771106102754310 ~1999
530514983106102996710 ~1999
530527883106105576710 ~1999
530531279424425023310 ~2001
530536757424429405710 ~2001
530540099106108019910 ~1999
530545199106109039910 ~1999
530565611955018099910 ~2001
530584991106116998310 ~1999
530606651424485320910 ~2001
530621543106124308710 ~1999
5306308396898200907111 ~2004
5306367831273528279311 ~2002
Exponent Prime Factor Digits Year
530645543106129108710 ~1999
530664371106132874310 ~1999
530670347424536277710 ~2001
530671811106134362310 ~1999
530673911106134782310 ~1999
530677859106135571910 ~1999
530681581318408948710 ~2000
530706791106141358310 ~1999
530745851106149170310 ~1999
530751839106150367910 ~1999
530755103106151020710 ~1999
530760053318456031910 ~2000
530762137318457282310 ~2000
530786519106157303910 ~1999
530808713743132198310 ~2001
530821079106164215910 ~1999
530843227530843227110 ~2001
530849699106169939910 ~1999
530850863106170172710 ~1999
530854739106170947910 ~1999
530859551106171910310 ~1999
530861879106172375910 ~1999
530869919106173983910 ~1999
530870423106174084710 ~1999
530890043106178008710 ~1999
Exponent Prime Factor Digits Year
530893873318536323910 ~2000
530906633318543979910 ~2000
530911861318547116710 ~2000
530956043106191208710 ~1999
530976839106195367910 ~1999
5309896494247917192111 ~2003
530995589424796471310 ~2001
530996951424797560910 ~2001
531030587955855056710 ~2001
531068243106213648710 ~1999
531078761318647256710 ~2000
531083093318649855910 ~2000
531135433318681259910 ~2000
531145319106229063910 ~1999
531151823106230364710 ~1999
531160739106232147910 ~1999
5311777011593533103111 ~2002
531182777318709666310 ~2000
531198203106239640710 ~1999
531218351106243670310 ~1999
5312357592124943036111 ~2002
5312393814568658676711 ~2003
531250319106250063910 ~1999
531255911106251182310 ~1999
531271903531271903110 ~2001
Exponent Prime Factor Digits Year
531292199106258439910 ~1999
531295559106259111910 ~1999
531304097318782458310 ~2000
531306203106261240710 ~1999
531327431106265486310 ~1999
53133256121147035927912 ~2005
531334151106266830310 ~1999
531336863106267372710 ~1999
531356363106271272710 ~1999
531380461318828276710 ~2000
531383999106276799910 ~1999
5314054672657027335111 ~2003
531419279106283855910 ~1999
5314290771275429784911 ~2002
531441359106288271910 ~1999
531443219106288643910 ~1999
531458771106291754310 ~1999
531477539106295507910 ~1999
531484273318890563910 ~2000
531504047425203237710 ~2001
531516787850426859310 ~2001
531531683106306336710 ~1999
5315810213295802330311 ~2003
531581399106316279910 ~1999
531586049425268839310 ~2001
Home
4.768.925 digits
e-mail
25-05-04