Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
521292461312775476710 ~2000
521292731104258546310 ~1999
521302559104260511910 ~1999
521341763104268352710 ~1999
521367659104273531910 ~1999
521369879104273975910 ~1999
521386031104277206310 ~1999
521390033312834019910 ~2000
521396663104279332710 ~1999
521403959104280791910 ~1999
521411783104282356710 ~1999
521411861417129488910 ~2001
521426579104285315910 ~1999
521427713312856627910 ~2000
521436431104287286310 ~1999
5214484812085793924111 ~2002
521458559104291711910 ~1999
521466623104293324710 ~1999
521483441312890064710 ~2000
521504591104300918310 ~1999
521509619104301923910 ~1999
5215213871773172715911 ~2002
521522663104304532710 ~1999
521525891104305178310 ~1999
521535551104307110310 ~1999
Exponent Prime Factor Digits Year
5215388811668924419311 ~2002
521549051104309810310 ~1999
521549159104309831910 ~1999
521556011104311202310 ~1999
521567399417253919310 ~2001
521575751104315150310 ~1999
521595839104319167910 ~1999
521607263104321452710 ~1999
521608931104321786310 ~1999
521613419104322683910 ~1999
521637971104327594310 ~1999
521681591104336318310 ~1999
521681819104336363910 ~1999
521684651104336930310 ~1999
521692817313015690310 ~2000
521710499104342099910 ~1999
521754251104350850310 ~1999
521776421313065852710 ~2000
521790491104358098310 ~1999
521796313313077787910 ~2000
521798471417438776910 ~2001
521806511104361302310 ~1999
521806919104361383910 ~1999
521815691104363138310 ~1999
521817143104363428710 ~1999
Exponent Prime Factor Digits Year
521819159104363831910 ~1999
521831777313099066310 ~2000
521836099521836099110 ~2001
5218634992504944795311 ~2002
521872097313123258310 ~2000
521873813313124287910 ~2000
521890559104378111910 ~1999
521891663104378332710 ~1999
521902943104380588710 ~1999
521955971104391194310 ~1999
521957603104391520710 ~1999
521977331104395466310 ~1999
521983993313190395910 ~2000
5219992131670397481711 ~2002
522002057313201234310 ~2000
522024263104404852710 ~1999
522024551104404910310 ~1999
522031151104406230310 ~1999
5220378972401374326311 ~2002
5220463672923459655311 ~2003
522046751104409350310 ~1999
522051371104410274310 ~1999
5220548931252931743311 ~2002
522055997730878395910 ~2001
522067523104413504710 ~1999
Exponent Prime Factor Digits Year
522067691104413538310 ~1999
522075553313245331910 ~2000
522078131104415626310 ~1999
522094019104418803910 ~1999
522110423104422084710 ~1999
522140219104428043910 ~1999
522145163104429032710 ~1999
522157763104431552710 ~1999
522157859104431571910 ~1999
522159023104431804710 ~1999
522174479104434895910 ~1999
522181739104436347910 ~1999
522185381313311228710 ~2000
522195071104439014310 ~1999
522195419104439083910 ~1999
522197051104439410310 ~1999
522200117313320070310 ~2000
522217481313330488710 ~2000
522292997417834397710 ~2001
522296651417837320910 ~2001
522299243104459848710 ~1999
522321083104464216710 ~1999
522335903104467180710 ~1999
522336301313401780710 ~2000
522388837313433302310 ~2000
Home
4.768.925 digits
e-mail
25-05-04